TensorRT-LLMs/cpp/tensorrt_llm/runtime/runtimeKernels.cu
Kaiyu Xie db4edea1e1
Update TensorRT-LLM (#1763)
* Update TensorRT-LLM

---------

Co-authored-by: Kota Tsuyuzaki <bloodeagle40234@gmail.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>
2024-06-11 16:59:02 +08:00

1236 lines
55 KiB
Plaintext

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/speculativeDecoding/kvCacheUpdateKernels.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include <cub/cub.cuh>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace tensorrt_llm::runtime::kernels
{
namespace
{
template <typename T>
__global__ void fill(T* data, std::size_t size, T const value)
{
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const stride = static_cast<std::size_t>(blockDim.x) * gridDim.x;
for (auto idx = tidx; idx < size; idx += stride)
{
data[idx] = value;
}
}
} // namespace
template <typename T>
void invokeFill(IBuffer& buffer, T const value, CudaStream const& stream)
{
auto data = bufferCast<T>(buffer);
auto const size = buffer.getSize();
dim3 const blockSize{256};
std::size_t const gridx{tc::ceilDiv(size, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax))};
fill<<<gridSize, blockSize, 0, stream.get()>>>(data, size, value);
}
// template instantiation
template void invokeFill(IBuffer&, std::int64_t, CudaStream const&);
template void invokeFill(IBuffer&, std::int32_t, CudaStream const&);
template void invokeFill(IBuffer&, std::int8_t, CudaStream const&);
template void invokeFill(IBuffer&, std::uint8_t, CudaStream const&);
template void invokeFill(IBuffer&, bool, CudaStream const&);
template void invokeFill(IBuffer&, half, CudaStream const&);
template void invokeFill(IBuffer&, float, CudaStream const&);
namespace
{
template <typename T>
__global__ void fillBatch(T* data, std::int32_t const* indices, std::size_t size, T const* values)
{
auto const batchIdx = indices[blockIdx.y];
const T value = values[blockIdx.y];
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const stride = static_cast<std::size_t>(blockDim.x) * gridDim.x;
auto const startIdx = batchIdx * size;
auto const endIdx = startIdx + size;
for (auto idx = startIdx + tidx; idx < endIdx; idx += stride)
{
data[idx] = value;
}
}
} // namespace
template <typename T>
void invokeFillBatch(IBuffer& buffer, IBuffer const& slotIndices, std::size_t slotStride, IBuffer const& values,
CudaStream const& stream)
{
auto data = bufferCast<T>(buffer);
auto indices = bufferCast<std::int32_t>(slotIndices);
auto fillValues = bufferCast<T>(values);
auto numSlots = slotIndices.getSize();
auto const size = slotStride;
dim3 const blockSize{256};
std::size_t const gridx{tc::ceilDiv(size, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax)), static_cast<std::uint32_t>(numSlots)};
fillBatch<<<gridSize, blockSize, 0, stream.get()>>>(data, indices, size, fillValues);
}
// template instantiation
template void invokeFillBatch<float>(IBuffer&, IBuffer const&, std::size_t, IBuffer const&, CudaStream const&);
template void invokeFillBatch<std::int8_t>(IBuffer&, IBuffer const&, std::size_t, IBuffer const&, CudaStream const&);
template void invokeFillBatch<std::int32_t>(IBuffer&, IBuffer const&, std::size_t, IBuffer const&, CudaStream const&);
namespace
{
template <typename VecT>
__global__ void copyBatch(uint8_t const* srcData, uint8_t* dstData, std::int32_t const* srcOffsets,
std::int32_t const* dstOffsets, std::int32_t const* sizes, std::int32_t const dataTypeSize)
{
constexpr auto VEC_ELTS = static_cast<int32_t>(sizeof(VecT));
auto const srcStartIdx = srcOffsets[blockIdx.y] * dataTypeSize;
auto const dstStartIdx = dstOffsets[blockIdx.y] * dataTypeSize;
auto const size = sizes[blockIdx.y] * dataTypeSize;
auto const tidx = (static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x) * VEC_ELTS;
auto const stride = static_cast<std::size_t>(blockDim.x) * gridDim.x * VEC_ELTS;
auto const srcEndIdx = srcStartIdx + size;
auto srcIdx = srcStartIdx + tidx;
auto dstIdx = dstStartIdx + tidx;
for (; srcIdx < srcEndIdx; srcIdx += stride, dstIdx += stride)
{
*reinterpret_cast<VecT*>(&dstData[dstIdx]) = *reinterpret_cast<VecT const*>(&srcData[srcIdx]);
}
}
} // namespace
void invokeCopyBatch(IBuffer const& srcBuffer, IBuffer& dstBuffer, IBuffer const& srcOffsets, IBuffer const& dstOffsets,
IBuffer const& sizes, std::size_t maxStride, CudaStream const& stream)
{
auto srcDataPtr = reinterpret_cast<uint8_t const*>(srcBuffer.data());
auto dstDataPtr = reinterpret_cast<uint8_t*>(dstBuffer.data());
auto srcOffsetsPtr = bufferCast<std::int32_t>(srcOffsets);
auto dstOffsetsPtr = bufferCast<std::int32_t>(dstOffsets);
auto sizesPtr = bufferCast<std::int32_t>(sizes);
auto numSlots = srcOffsets.getSize();
auto const size = maxStride;
auto const dataTypeSize = BufferDataType(srcBuffer.getDataType()).getSize();
auto const copyRowSizeInBytes = size * dataTypeSize;
auto copyBatchInvocation = copyBatch<uint8_t>;
auto vectorSize = 1;
if (dataTypeSize % 16 == 0)
{
vectorSize = 16;
copyBatchInvocation = copyBatch<uint4>;
}
else if (dataTypeSize % 8 == 0)
{
vectorSize = 8;
copyBatchInvocation = copyBatch<uint2>;
}
else if (dataTypeSize % 4 == 0)
{
vectorSize = 4;
copyBatchInvocation = copyBatch<uint32_t>;
}
else if (dataTypeSize % 2 == 0)
{
vectorSize = 2;
copyBatchInvocation = copyBatch<uint16_t>;
}
dim3 const blockSize{256};
std::size_t const gridx{tc::ceilDiv(copyRowSizeInBytes / vectorSize, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax)), static_cast<std::uint32_t>(numSlots)};
copyBatchInvocation<<<gridSize, blockSize, 0, stream.get()>>>(
srcDataPtr, dstDataPtr, srcOffsetsPtr, dstOffsetsPtr, sizesPtr, static_cast<int32_t>(dataTypeSize));
}
namespace
{
template <typename T>
__global__ void add(T* data, std::size_t size, T const value)
{
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const stride = static_cast<std::size_t>(blockDim.x) * gridDim.x;
for (auto idx = tidx; idx < size; idx += stride)
{
data[idx] += value;
}
}
} // namespace
template <typename T>
void invokeAdd(IBuffer& buffer, T const value, CudaStream const& stream)
{
auto data = bufferCast<T>(buffer);
auto const size = buffer.getSize();
dim3 const blockSize{256};
std::size_t const gridx{tc::ceilDiv(size, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax))};
add<<<gridSize, blockSize, 0, stream.get()>>>(data, size, value);
}
template void invokeAdd(IBuffer&, std::int32_t, CudaStream const&);
template void invokeAdd(IBuffer&, std::int8_t, CudaStream const&);
template void invokeAdd(IBuffer&, float, CudaStream const&);
namespace
{
template <typename T>
__global__ void reduceSum(T* output, T const* input, std::size_t size)
{
T threadSum = 0;
for (auto index = threadIdx.x; index < size; index += blockDim.x)
{
threadSum += input[index];
}
T blockSum = 0;
if (blockDim.x <= 32)
{
blockSum = tc::warpReduceSum(threadSum);
}
else
{
blockSum = tc::blockReduceSum(threadSum);
}
__syncthreads();
if (threadIdx.x == 0)
{
*output = blockSum;
}
}
} // namespace
template <typename T>
void invokeReduce(IBuffer& output, IBuffer const& input, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
TLLM_CHECK_WITH_INFO(output.getSize() == 1, common::fmtstr("Output size (%ld) has to be 1", output.getSize()));
auto outputPtr = bufferCast<T>(output);
auto inputPtr = bufferCast<T>(input);
auto const size = input.getSize();
dim3 blockSize{std::min(512u, static_cast<std::uint32_t>(size))};
dim3 gridSize{1};
reduceSum<<<gridSize, blockSize, 0, stream.get()>>>(outputPtr, inputPtr, size);
}
void reduce(IBuffer& output, IBuffer const& input, CudaStream const& stream)
{
switch (input.getDataType())
{
case nvinfer1::DataType::kINT32: invokeReduce<SizeType32>(output, input, stream); break;
case nvinfer1::DataType::kFLOAT: invokeReduce<float>(output, input, stream); break;
case nvinfer1::DataType::kHALF: invokeReduce<half>(output, input, stream); break;
case nvinfer1::DataType::kINT8: invokeReduce<int8_t>(output, input, stream); break;
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
namespace
{
__global__ void transpose(
SizeType32* output, SizeType32 const* input, SizeType32 const batchSize, SizeType32 const rowSize)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
for (SizeType32 tokenIdx = tidx; tokenIdx < rowSize; tokenIdx += blockDim.x * gridDim.x)
{
auto const inputIdx = batchIdx * rowSize + tokenIdx;
auto const outputIdx = tokenIdx * batchSize + batchIdx;
output[outputIdx] = input[inputIdx];
}
}
}
} // namespace
void invokeTranspose(ITensor& output, ITensor const& input, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
TLLM_CHECK_WITH_INFO(input.getSize() == output.getSize(),
common::fmtstr("Input size (%ld) and output size (%ld) differ", input.getSize(), output.getSize()));
auto const& inputShape = input.getShape();
TLLM_CHECK_WITH_INFO(
inputShape.nbDims == 2, common::fmtstr("Input shape must have 2 dimensions, but has %d", inputShape.nbDims));
SizeType32 const batchSize = inputShape.d[0];
SizeType32 const rowSize = inputShape.d[1];
dim3 const blockSize(256, 1);
dim3 const gridSize((rowSize + blockSize.x - 1) / blockSize.x, batchSize);
transpose<<<gridSize, blockSize, 0, stream.get()>>>(
bufferCast<SizeType32>(output), bufferCast<SizeType32 const>(input), batchSize, rowSize);
}
namespace
{
__global__ void transposeWithOutputOffset(SizeType32* output, SizeType32 const* input, SizeType32 const nbInputRows,
SizeType32 const inputRowSize, SizeType32 const outputRowSize, SizeType32 const outputOffset)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < nbInputRows; batchIdx += blockDim.y * gridDim.y)
{
for (SizeType32 tokenIdx = tidx; tokenIdx < inputRowSize; tokenIdx += blockDim.x * gridDim.x)
{
auto const inputIdx = batchIdx * inputRowSize + tokenIdx;
auto const outputIdx = tokenIdx * outputRowSize + outputOffset + batchIdx;
output[outputIdx] = input[inputIdx];
}
}
}
} // namespace
void invokeTransposeWithOutputOffset(
ITensor& output, ITensor const& input, SizeType32 const outputOffset, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
auto const& inputShape = input.getShape();
TLLM_CHECK_WITH_INFO(
inputShape.nbDims == 2, common::fmtstr("Input shape must have 2 dimensions, but has %d", inputShape.nbDims));
SizeType32 const nbInputRows = inputShape.d[0];
SizeType32 const inputRowSize = inputShape.d[1];
auto const& outputShape = output.getShape();
TLLM_CHECK_WITH_INFO(
outputShape.nbDims == 2, common::fmtstr("Output shape must have 2 dimensions, but has %d", outputShape.nbDims));
SizeType32 const nbOutputRows = outputShape.d[0];
SizeType32 const outputRowSize = outputShape.d[1];
TLLM_CHECK_WITH_INFO(inputRowSize == nbOutputRows,
common::fmtstr("Input dim 1 (%d) and output dim 0 (%d) differ", inputRowSize, nbOutputRows));
TLLM_CHECK_WITH_INFO(outputOffset + nbInputRows <= outputRowSize,
common::fmtstr("Input (%d rows) does not fit into output (%d columns, offset %d)", nbInputRows, inputRowSize,
outputOffset));
dim3 const blockSize(256, 1);
dim3 const gridSize((inputRowSize + blockSize.x - 1) / blockSize.x, nbInputRows);
transposeWithOutputOffset<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType32>(output),
bufferCast<SizeType32 const>(input), nbInputRows, inputRowSize, outputRowSize, outputOffset);
}
namespace
{
__global__ void transposeWithInputOffset(SizeType32* output, SizeType32 const* input, SizeType32 const outputRowSize,
SizeType32 const nbOutputRows, SizeType32 const inputRowSize, SizeType32 const inputOffset)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < outputRowSize; batchIdx += blockDim.y * gridDim.y)
{
for (SizeType32 tokenIdx = tidx; tokenIdx < nbOutputRows; tokenIdx += blockDim.x * gridDim.x)
{
auto const inputIdx = batchIdx * inputRowSize + inputOffset + tokenIdx;
auto const outputIdx = tokenIdx * outputRowSize + batchIdx;
output[outputIdx] = input[inputIdx];
}
}
}
} // namespace
void invokeTransposeWithInputOffset(
ITensor& output, ITensor const& input, SizeType32 const inputOffset, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
auto const& inputShape = input.getShape();
TLLM_CHECK_WITH_INFO(
inputShape.nbDims == 2, common::fmtstr("Input shape must have 2 dimensions, but has %d", inputShape.nbDims));
SizeType32 const nbInputRows = inputShape.d[0];
SizeType32 const inputRowSize = inputShape.d[1];
auto const& outputShape = output.getShape();
TLLM_CHECK_WITH_INFO(
outputShape.nbDims == 2, common::fmtstr("Output shape must have 2 dimensions, but has %d", outputShape.nbDims));
SizeType32 const nbOutputRows = outputShape.d[0];
SizeType32 const outputRowSize = outputShape.d[1];
TLLM_CHECK_WITH_INFO(nbInputRows == outputRowSize,
common::fmtstr("Input dim 0 (%d) and output dim 1 (%d) differ", nbInputRows, outputRowSize));
TLLM_CHECK_WITH_INFO(inputOffset + nbOutputRows <= inputRowSize,
common::fmtstr("Cannot extract output (%d rows) from input (%d columns, offset %d)", nbOutputRows, inputRowSize,
inputOffset));
dim3 const blockSize(256, 1);
dim3 const gridSize((nbOutputRows + blockSize.x - 1) / blockSize.x, outputRowSize);
transposeWithInputOffset<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType32>(output),
bufferCast<SizeType32 const>(input), outputRowSize, nbOutputRows, inputRowSize, inputOffset);
}
void invokeInclusiveSum(IBuffer& output, IBuffer const& input, BufferManager const& manager, CudaStream const& stream)
{
auto const size = input.getSize();
auto const* inputData = bufferCast<SizeType32>(input);
auto* outputData = bufferCast<SizeType32>(output);
std::size_t tempStorageBytes{0};
cub::DeviceScan::InclusiveSum(nullptr, tempStorageBytes, inputData, outputData, size, stream.get());
auto tempStorage = manager.gpu(tempStorageBytes, nvinfer1::DataType::kUINT8);
auto* tempStorageData = bufferCast<std::uint8_t>(*tempStorage);
cub::DeviceScan::InclusiveSum(tempStorageData, tempStorageBytes, inputData, outputData, size, stream.get());
}
void invokeInclusiveSum(IBuffer& output, IBuffer& tmpBuffer, IBuffer const& input, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(nvinfer1::DataType::kUINT8 == tmpBuffer.getDataType(), "tmpBuffer has wrong data type");
auto const size = input.getSize();
auto const* inputData = bufferCast<SizeType32>(input);
auto* outputData = bufferCast<SizeType32>(output);
std::size_t tempStorageBytes{0};
cub::DeviceScan::InclusiveSum(nullptr, tempStorageBytes, inputData, outputData, size, stream.get());
tmpBuffer.resize(tempStorageBytes);
auto* tmpBufferPtr = bufferCast<std::uint8_t>(tmpBuffer);
cub::DeviceScan::InclusiveSum(tmpBufferPtr, tempStorageBytes, inputData, outputData, size, stream.get());
}
namespace
{
__global__ void buildTokenMask(SizeType32* tokenMask, SizeType32 const* inputLengths, SizeType32 const batchSize,
SizeType32 const maxInputLength, SizeType32 const maxSeqLength)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
auto const inputLength = inputLengths[batchIdx];
for (SizeType32 tokenIdx = tidx; tokenIdx < maxSeqLength; tokenIdx += blockDim.x * gridDim.x)
{
tokenMask[batchIdx * maxSeqLength + tokenIdx]
= (tokenIdx >= inputLength && tokenIdx < maxInputLength) ? 1 : 0;
}
}
}
} // namespace
void invokeBuildTokenMask(
ITensor& tokenMask, ITensor const& inputLengths, SizeType32 const maxInputLength, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(TRTDataType<SizeType32>::value == tokenMask.getDataType(), "tokenMask has wrong data type");
TLLM_CHECK_WITH_INFO(
TRTDataType<SizeType32>::value == inputLengths.getDataType(), "inputLengths has wrong data type");
auto const& shape = tokenMask.getShape();
SizeType32 const batchSize = shape.d[0];
SizeType32 const maxSeqLength = shape.d[1];
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
common::fmtstr(
"TtokenMask dimension 1 (%d) is smaller than max input length (%d)", maxSeqLength, maxInputLength));
dim3 const blockSize(256, 1);
dim3 const gridSize((maxSeqLength + blockSize.x - 1) / blockSize.x, batchSize);
buildTokenMask<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType32>(tokenMask),
bufferCast<SizeType32 const>(inputLengths), batchSize, maxInputLength, maxSeqLength);
}
namespace
{
__global__ void buildAttentionMask(SizeType32* attentionMask, SizeType32 const size, SizeType32 const padId)
{
SizeType32 const tid = blockIdx.x * blockDim.x + threadIdx.x;
for (SizeType32 i = tid; i < size; i += blockDim.x * gridDim.x)
{
auto const x = attentionMask[i];
attentionMask[i] = (x != padId);
}
}
} // namespace
void invokeBuildAttentionMask(ITensor& attentionMask, SizeType32 const padId, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(
TRTDataType<SizeType32>::value == attentionMask.getDataType(), "attentionMask has wrong data type");
auto const size = attentionMask.getSize();
dim3 const blockSize(256);
dim3 const gridSize((size + blockSize.x - 1) / blockSize.x);
buildAttentionMask<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType32>(attentionMask), size, padId);
}
namespace
{
__global__ void extendAttentionMask(
SizeType32* newMask, SizeType32 const* oldMask, SizeType32 const batchSize, SizeType32 const seqLength)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
for (SizeType32 tokenIdx = tidx; tokenIdx < seqLength + 1; tokenIdx += blockDim.x * gridDim.x)
{
SizeType32 oldIndex = batchIdx * seqLength + tokenIdx;
SizeType32 newIndex = batchIdx * (seqLength + 1) + tokenIdx;
newMask[newIndex] = (tokenIdx < seqLength) ? oldMask[oldIndex] : 1;
}
}
}
} // namespace
void invokeExtendAttentionMask(ITensor& newMask, ITensor const& oldMask, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(TRTDataType<SizeType32>::value == newMask.getDataType(), "attentionMask has wrong data type");
TLLM_CHECK_WITH_INFO(TRTDataType<SizeType32>::value == oldMask.getDataType(), "attentionMask has wrong data type");
auto const& shape = oldMask.getShape();
SizeType32 const batchSize = shape.d[0];
SizeType32 const seqLength = shape.d[1];
dim3 const blockSize(256, 1);
dim3 const gridSize((seqLength + blockSize.x - 1) / blockSize.x, batchSize);
extendAttentionMask<<<gridSize, blockSize, 0, stream.get()>>>(
bufferCast<SizeType32>(newMask), bufferCast<SizeType32>(oldMask), batchSize, seqLength);
}
namespace
{
__global__ void copyInputToOutputTransposed(TokenIdType* outputIds, TokenIdType const* inputIds,
SizeType32 const* inputLengths, TokenIdType const padId, SizeType32 const batchSize, SizeType32 const beamWidth,
SizeType32 const maxInputLength)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
auto const inputLength = inputLengths[batchIdx];
for (SizeType32 tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
{
auto const value = (tokenIdx < inputLength) ? inputIds[batchIdx * maxInputLength + tokenIdx] : padId;
for (SizeType32 beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
auto const outputIdx = tc::flat_index3(tokenIdx, batchIdx, beamIdx, batchSize, beamWidth);
outputIds[outputIdx] = value;
}
}
}
}
} // namespace
void invokeCopyInputToOutputTransposed(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputLengths,
TokenIdType const padId, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
auto const batchSize = static_cast<SizeType32>(inputLengths.getSize());
auto const& inputShape = inputIds.getShape();
SizeType32 const maxInputLength = inputShape.d[inputShape.nbDims - 1];
auto const& outputShape = outputIds.getShape();
SizeType32 const maxSeqLength = outputShape.d[0];
SizeType32 const beamWidth = outputShape.d[2];
auto const inputBatchSize = inputIds.getSize() / maxInputLength;
TLLM_CHECK_WITH_INFO(std::size_t(batchSize) == inputBatchSize,
common::fmtstr("Input ids batch size (%ld) does not match inputLengths size (%ld)", inputBatchSize,
std::size_t(batchSize)));
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[1],
common::fmtstr(
"Output ids batch size (" FMT_DIM ") does not match inputLengths size (%d)", outputShape.d[1], batchSize));
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
common::fmtstr(
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
dim3 const blockSize(256, 1);
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
copyInputToOutputTransposed<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<TokenIdType>(outputIds),
bufferCast<TokenIdType const>(inputIds), bufferCast<SizeType32 const>(inputLengths), padId, batchSize,
beamWidth, maxInputLength);
}
namespace
{
__global__ void copyPackedInputToOutputTransposed(TokenIdType* outputIds, TokenIdType const* inputIds,
SizeType32 const* inputOffsets, TokenIdType const padId, SizeType32 const batchSize, SizeType32 const beamWidth,
SizeType32 const maxInputLength)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
auto const tokenBegin = inputOffsets[batchIdx];
auto const tokenEnd = inputOffsets[batchIdx + 1];
auto const inputLength = tokenEnd - tokenBegin;
for (SizeType32 tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
{
auto const value = (tokenIdx < inputLength) ? inputIds[tokenBegin + tokenIdx] : padId;
for (SizeType32 beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
auto const outputIdx = tc::flat_index3(tokenIdx, batchIdx, beamIdx, batchSize, beamWidth);
outputIds[outputIdx] = value;
}
}
}
}
} // namespace
void invokeCopyPackedInputToOutputTransposed(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputOffsets,
SizeType32 const maxInputLength, TokenIdType const padId, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
auto const batchSize = static_cast<SizeType32>(inputOffsets.getSize()) - 1;
auto const& outputShape = outputIds.getShape();
SizeType32 const maxSeqLength = outputShape.d[0];
SizeType32 const beamWidth = outputShape.d[2];
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[1],
common::fmtstr("Output ids batch size (" FMT_DIM ") does not match inputOffsets batch size (%d)",
outputShape.d[1], batchSize));
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
common::fmtstr(
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
dim3 const blockSize(256, 1);
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
copyPackedInputToOutputTransposed<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<TokenIdType>(outputIds),
bufferCast<TokenIdType const>(inputIds), bufferCast<SizeType32 const>(inputOffsets), padId, batchSize,
beamWidth, maxInputLength);
}
namespace
{
__global__ void copyInputToOutput(TokenIdType* outputIds, TokenIdType const* inputIds, SizeType32 const* inputLengths,
TokenIdType const padId, SizeType32 const batchSize, SizeType32 const beamWidth, SizeType32 const maxInputLength,
SizeType32 const maxSeqLength)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
auto const inputLength = inputLengths[batchIdx];
for (SizeType32 tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
{
auto const value = (tokenIdx < inputLength) ? inputIds[batchIdx * maxInputLength + tokenIdx] : padId;
for (SizeType32 beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
auto const outputIdx = tc::flat_index3(batchIdx, beamIdx, tokenIdx, beamWidth, maxSeqLength);
outputIds[outputIdx] = value;
}
}
}
}
} // namespace
void invokeCopyInputToOutput(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputLengths,
TokenIdType const padId, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
auto const& inputShape = inputIds.getShape();
auto const& outputShape = outputIds.getShape();
TLLM_CHECK_WITH_INFO(
outputShape.nbDims == 3, common::fmtstr("Output shape must have 3 dimensions, but has %d", outputShape.nbDims));
auto const batchSize = static_cast<SizeType32>(inputLengths.getSize());
SizeType32 const maxInputLength = inputShape.d[inputShape.nbDims - 1];
SizeType32 const beamWidth = outputShape.d[1];
SizeType32 const maxSeqLength = outputShape.d[2];
auto const inputBatchSize = inputIds.getSize() / maxInputLength;
TLLM_CHECK_WITH_INFO(std::size_t(batchSize) == inputBatchSize,
common::fmtstr("Input ids batch size (%ld) does not match inputLengths size (%ld)", inputBatchSize,
std::size_t(batchSize)));
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[0],
common::fmtstr(
"Output ids batch size (" FMT_DIM ") does not match inputLengths size (%d)", outputShape.d[0], batchSize));
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
common::fmtstr(
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
dim3 const blockSize(256, 1);
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
copyInputToOutput<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<TokenIdType>(outputIds),
bufferCast<TokenIdType const>(inputIds), bufferCast<SizeType32 const>(inputLengths), padId, batchSize,
beamWidth, maxInputLength, maxSeqLength);
}
namespace
{
__global__ void copyPackedInputToOutput(TokenIdType* outputIds, TokenIdType const* inputIds,
SizeType32 const* inputOffsets, TokenIdType const padId, SizeType32 const batchSize, SizeType32 const beamWidth,
SizeType32 const maxInputLength, SizeType32 const maxSeqLength)
{
SizeType32 const tidx = blockIdx.x * blockDim.x + threadIdx.x;
SizeType32 const tidy = blockIdx.y * blockDim.y + threadIdx.y;
for (SizeType32 batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
{
auto const tokenBegin = inputOffsets[batchIdx];
auto const tokenEnd = inputOffsets[batchIdx + 1];
auto const inputLength = tokenEnd - tokenBegin;
for (SizeType32 tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
{
auto const value = (tokenIdx < inputLength) ? inputIds[tokenBegin + tokenIdx] : padId;
for (SizeType32 beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
auto const outputIdx = tc::flat_index3(batchIdx, beamIdx, tokenIdx, beamWidth, maxSeqLength);
outputIds[outputIdx] = value;
}
}
}
}
} // namespace
void invokeCopyPackedInputToOutput(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputOffsets,
SizeType32 const maxInputLength, TokenIdType const padId, CudaStream const& stream)
{
TLLM_CHECK_WITH_INFO(
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
auto const& outputShape = outputIds.getShape();
TLLM_CHECK_WITH_INFO(
outputShape.nbDims == 3, common::fmtstr("Output shape must have 3 dimensions, but has %d", outputShape.nbDims));
auto const batchSize = static_cast<SizeType32>(inputOffsets.getSize()) - 1;
SizeType32 const beamWidth = outputShape.d[1];
SizeType32 const maxSeqLength = outputShape.d[2];
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[0],
common::fmtstr("Output ids batch size (" FMT_DIM ") does not match inputOffsets batch size (%d)",
outputShape.d[0], batchSize));
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
common::fmtstr(
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
dim3 const blockSize(256, 1);
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
copyPackedInputToOutput<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<TokenIdType>(outputIds),
bufferCast<TokenIdType const>(inputIds), bufferCast<SizeType32 const>(inputOffsets), padId, batchSize,
beamWidth, maxInputLength, maxSeqLength);
}
void initOutputIds(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputLengths,
ITensor const& inputOffsets, TokenIdType const padId, TokenIdType const endId, SizeType32 const maxInputLength,
bool const inputPacked, CudaStream const& stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
kernels::invokeFill(outputIds, endId, stream);
if (inputPacked)
{
kernels::invokeCopyPackedInputToOutput(outputIds, inputIds, inputOffsets, maxInputLength, padId, stream);
}
else
{
kernels::invokeCopyInputToOutput(outputIds, inputIds, inputLengths, padId, stream);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
namespace
{
template <typename T>
__global__ void scatterTensor(T* output, T const* input, std::uint32_t const batchSize,
std::uint32_t const inputRowSize, std::size_t const outputRowSize, std::uint32_t const beamWidth)
{
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const tidy = static_cast<std::size_t>(blockIdx.y) * blockDim.y + threadIdx.y;
auto const stridex = static_cast<std::size_t>(blockDim.x) * gridDim.x;
auto const stridey = static_cast<std::size_t>(blockDim.y) * gridDim.y;
for (auto batchIdx = tidy; batchIdx < batchSize; batchIdx += stridey)
{
for (auto columnIdx = tidx; columnIdx < inputRowSize; columnIdx += stridex)
{
auto const inputIdx = batchIdx * inputRowSize + columnIdx;
auto const value = input[inputIdx];
std::size_t constexpr beamIdx{0};
auto const outputIdx = (batchIdx * beamWidth + beamIdx) * outputRowSize + columnIdx;
output[outputIdx] = value;
}
}
}
template <typename T>
__global__ void splitTransposed(T* output, T const* input, std::uint32_t const batchSize,
std::uint32_t const inputRowSize, std::uint32_t const split)
{
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const tidy = static_cast<std::size_t>(blockIdx.y) * blockDim.y + threadIdx.y;
auto const tidz = static_cast<std::size_t>(blockIdx.z) * blockDim.z + threadIdx.z;
auto const stridex = static_cast<std::size_t>(blockDim.x) * gridDim.x;
auto const stridey = static_cast<std::size_t>(blockDim.y) * gridDim.y;
auto const stridez = static_cast<std::size_t>(blockDim.z) * gridDim.z;
auto const splitRowSize = static_cast<std::size_t>(inputRowSize / split);
for (auto pIdx = tidz; pIdx < split; pIdx += stridez)
{
for (auto bid = tidx; bid < batchSize; bid += stridex)
{
for (auto colIdx = tidy; colIdx < splitRowSize; colIdx += stridey)
{
auto outputIdx
= common::flat_index3(pIdx, bid, colIdx, static_cast<std::size_t>(batchSize), splitRowSize);
auto inputIdx
= common::flat_index2(bid, colIdx + pIdx * splitRowSize, static_cast<std::size_t>(inputRowSize));
output[outputIdx] = input[inputIdx];
}
}
}
}
template <typename T>
__global__ void tileTensor(T* output, T const* input, std::uint32_t const batchSize, std::size_t const inputRowSize,
std::size_t const outputRowSize, std::uint32_t const beamWidth)
{
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const tidy = static_cast<std::size_t>(blockIdx.y) * blockDim.y + threadIdx.y;
auto const stridex = static_cast<std::size_t>(blockDim.x) * gridDim.x;
auto const stridey = static_cast<std::size_t>(blockDim.y) * gridDim.y;
for (auto batchIdx = tidy; batchIdx < batchSize; batchIdx += stridey)
{
for (auto columnIdx = tidx; columnIdx < inputRowSize; columnIdx += stridex)
{
auto const inputIdx = batchIdx * inputRowSize + columnIdx;
auto const value = input[inputIdx];
for (std::size_t beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
auto const outputIdx = (batchIdx * beamWidth + beamIdx) * outputRowSize + columnIdx;
output[outputIdx] = value;
}
}
}
}
template <typename T>
__global__ void tileTensorInPlace(
T* inputOutput, std::uint32_t const batchSize, std::size_t const inputOutputRowSize, std::uint32_t const beamWidth)
{
auto const tidx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
auto const tidy = static_cast<std::size_t>(blockIdx.y) * blockDim.y + threadIdx.y;
auto const stridex = static_cast<std::size_t>(blockDim.x) * gridDim.x;
auto const stridey = static_cast<std::size_t>(blockDim.y) * gridDim.y;
for (auto batchIdx = tidy; batchIdx < batchSize; batchIdx += stridey)
{
for (auto columnIdx = tidx; columnIdx < inputOutputRowSize; columnIdx += stridex)
{
auto const inputIdx = (batchIdx * beamWidth + 0) * inputOutputRowSize + columnIdx;
auto const value = inputOutput[inputIdx];
for (std::size_t beamIdx = 1; beamIdx < beamWidth; ++beamIdx)
{
auto const outputIdx = (batchIdx * beamWidth + beamIdx) * inputOutputRowSize + columnIdx;
inputOutput[outputIdx] = value;
}
}
}
}
} // namespace
template <typename T>
void invokeScatterTensor(ITensor& output, ITensor const& input, SizeType32 beamWidth, CudaStream const& stream)
{
auto const& inputShape = input.getShape();
auto const nbInputRows = static_cast<std::uint32_t>(inputShape.d[0]);
auto const inputRowSize = input.getSize() / static_cast<std::size_t>(nbInputRows);
auto const& outputShape = output.getShape();
auto const nbOutputRows = static_cast<std::uint32_t>(outputShape.d[0]);
auto const outputRowSize = output.getSize() / static_cast<std::size_t>(nbOutputRows);
TLLM_CHECK_WITH_INFO(nbOutputRows == beamWidth * nbInputRows,
common::fmtstr(
"nbOutputRows (%d) must be beamWidth (%d) times nbInputRows (%d)", nbOutputRows, beamWidth, nbInputRows));
TLLM_CHECK_WITH_INFO(outputRowSize >= inputRowSize,
common::fmtstr("output row size (%ld) must be at least input row size (%ld)", outputRowSize, inputRowSize));
dim3 const blockSize{256, 1};
std::size_t const gridx{tc::ceilDiv(inputRowSize, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax)), nbInputRows};
scatterTensor<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<T>(output), bufferCast<T const>(input),
nbInputRows, inputRowSize, outputRowSize, static_cast<uint32_t>(beamWidth));
}
void scatterTensor(ITensor& output, ITensor const& input, SizeType32 beamWidth, CudaStream const& stream)
{
switch (input.getDataType())
{
case nvinfer1::DataType::kINT32: invokeScatterTensor<SizeType32>(output, input, beamWidth, stream); break;
case nvinfer1::DataType::kFLOAT: invokeScatterTensor<float>(output, input, beamWidth, stream); break;
case nvinfer1::DataType::kHALF: invokeScatterTensor<half>(output, input, beamWidth, stream); break;
case nvinfer1::DataType::kINT8: invokeScatterTensor<int8_t>(output, input, beamWidth, stream); break;
#ifdef ENABLE_FP8
case nvinfer1::DataType::kFP8: invokeScatterTensor<__nv_fp8_e4m3>(output, input, beamWidth, stream); break;
#endif // ENABLE_FP8
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
template <typename T>
void invokeSplitTransposed(ITensor& output, ITensor const& input, SizeType32 split, CudaStream const& stream)
{
auto const& inputShape = input.getShape();
auto const nbInputRows = static_cast<std::uint32_t>(inputShape.d[0]);
auto const inputRowSize = input.getSize() / static_cast<std::size_t>(nbInputRows);
auto const& outputShape = output.getShape();
auto const nbOutputRows = static_cast<std::uint32_t>(outputShape.d[0]);
auto const outputRowSize = output.getSize() / static_cast<std::size_t>(nbOutputRows);
auto const inputNbElems = input.getSize();
auto const outputNbElems = output.getSize();
TLLM_CHECK_WITH_INFO(
nbOutputRows == split, common::fmtstr("nbOutputRows (%d) must be split (%d)", nbOutputRows, split));
TLLM_CHECK_WITH_INFO(
inputNbElems == outputNbElems, common::fmtstr("input and output must have the same number of elements"));
dim3 const blockSize{256, 1, 1};
std::size_t const gridx{tc::ceilDiv(nbInputRows, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{
static_cast<std::uint32_t>(std::min(gridx, gridMax)), static_cast<std::uint32_t>(inputRowSize), 1};
splitTransposed<<<gridSize, blockSize, 0, stream.get()>>>(
bufferCast<T>(output), bufferCast<T const>(input), nbInputRows, inputRowSize, static_cast<uint32_t>(split));
}
void splitTransposed(ITensor& output, ITensor const& input, SizeType32 split, CudaStream const& stream)
{
switch (input.getDataType())
{
case nvinfer1::DataType::kINT32: invokeSplitTransposed<SizeType32>(output, input, split, stream); break;
case nvinfer1::DataType::kFLOAT: invokeSplitTransposed<float>(output, input, split, stream); break;
case nvinfer1::DataType::kHALF: invokeSplitTransposed<half>(output, input, split, stream); break;
case nvinfer1::DataType::kINT8: invokeSplitTransposed<int8_t>(output, input, split, stream); break;
#ifdef ENABLE_FP8
case nvinfer1::DataType::kFP8: invokeSplitTransposed<__nv_fp8_e4m3>(output, input, split, stream); break;
#endif // ENABLE_FP8
#ifdef ENABLE_BF16
case nvinfer1::DataType::kBF16: invokeSplitTransposed<__nv_bfloat16>(output, input, split, stream); break;
#endif // ENABLE_BF16
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
template <typename T>
void invokeTileTensor(ITensor& output, ITensor const& input, SizeType32 const beamWidth, CudaStream const& stream)
{
auto const& inputShape = input.getShape();
auto const nbInputRows = static_cast<std::uint32_t>(inputShape.d[0]);
auto const inputRowSize = input.getSize() / static_cast<std::size_t>(nbInputRows);
auto const& outputShape = output.getShape();
auto const nbOutputRows = static_cast<std::uint32_t>(outputShape.d[0]);
auto const outputRowSize = output.getSize() / static_cast<std::size_t>(nbOutputRows);
TLLM_CHECK_WITH_INFO(nbOutputRows == beamWidth * nbInputRows,
common::fmtstr(
"nbOutputRows (%d) must be beamWidth (%d) times nbInputRows (%d)", nbOutputRows, beamWidth, nbInputRows));
TLLM_CHECK_WITH_INFO(outputRowSize >= inputRowSize,
common::fmtstr("output row size (%ld) must be at least input row size (%ld)", outputRowSize, inputRowSize));
dim3 const blockSize{256, 1};
std::size_t const gridx{tc::ceilDiv(inputRowSize, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax)), nbInputRows};
tileTensor<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<T>(output), bufferCast<T const>(input), nbInputRows,
inputRowSize, outputRowSize, static_cast<uint32_t>(beamWidth));
}
void tileTensor(ITensor& output, ITensor const& input, SizeType32 beamWidth, CudaStream const& stream)
{
switch (input.getDataType())
{
case nvinfer1::DataType::kINT32: invokeTileTensor<SizeType32>(output, input, beamWidth, stream); break;
case nvinfer1::DataType::kFLOAT: invokeTileTensor<float>(output, input, beamWidth, stream); break;
case nvinfer1::DataType::kHALF: invokeTileTensor<half>(output, input, beamWidth, stream); break;
#ifdef ENABLE_BF16
case nvinfer1::DataType::kBF16: invokeTileTensor<__nv_bfloat16>(output, input, beamWidth, stream); break;
#endif // ENABLE_BF16
case nvinfer1::DataType::kINT8: invokeTileTensor<int8_t>(output, input, beamWidth, stream); break;
#ifdef ENABLE_FP8
case nvinfer1::DataType::kFP8: invokeTileTensor<__nv_fp8_e4m3>(output, input, beamWidth, stream); break;
#endif // ENABLE_FP8
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
template <typename T>
void invokeTileTensorInPlace(ITensor& inputOutput, SizeType32 const beamWidth, CudaStream const& stream)
{
auto const& inputOutputShape = inputOutput.getShape();
auto const nbOutputRows = static_cast<std::uint32_t>(inputOutputShape.d[0]);
auto const nbInputRows = nbOutputRows / static_cast<std::uint32_t>(beamWidth);
auto const inputOutputRowSize = inputOutput.getSize() / static_cast<std::size_t>(nbOutputRows);
dim3 const blockSize{256, 1};
std::size_t const gridx{tc::ceilDiv(inputOutputRowSize, blockSize.x)};
std::size_t const gridMax{std::numeric_limits<std::uint32_t>::max()};
dim3 const gridSize{static_cast<std::uint32_t>(std::min(gridx, gridMax)), nbInputRows};
tileTensorInPlace<<<gridSize, blockSize, 0, stream.get()>>>(
bufferCast<T>(inputOutput), nbInputRows, inputOutputRowSize, static_cast<std::uint32_t>(beamWidth));
}
void tileTensorInplace(ITensor& tensor, SizeType32 beamWidth, CudaStream const& stream)
{
switch (tensor.getDataType())
{
case nvinfer1::DataType::kINT32: invokeTileTensorInPlace<SizeType32>(tensor, beamWidth, stream); break;
case nvinfer1::DataType::kFLOAT: invokeTileTensorInPlace<float>(tensor, beamWidth, stream); break;
case nvinfer1::DataType::kHALF: invokeTileTensorInPlace<half>(tensor, beamWidth, stream); break;
case nvinfer1::DataType::kINT8: invokeTileTensorInPlace<int8_t>(tensor, beamWidth, stream); break;
#ifdef ENABLE_FP8
case nvinfer1::DataType::kFP8: invokeTileTensorInPlace<__nv_fp8_e4m3>(tensor, beamWidth, stream); break;
#endif // ENABLE_FP8
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
// In the following kernel, we launch a grid with batchSize blocks of threads. Each thread block
// copies the logits from the "logits" tensor to the "lastTokenLogits" tensor for the last token
// of each sequence.
//
// TODO: Enable vector copies for higher BW utilization.
template <typename T>
__global__ void gatherLastTokenLogitsKernel(T* lastTokenLogits, T const* logits, int const* lastTokenIds,
int maxInputLength, int beamWidth, int vocabSizePadded)
{
// This sequence.
int seqIdx = blockIdx.x;
// Find the index of the last token in that sequence.
// Since lastTokenIds is the accumulated length instead of real ids, so we need to minus 1.
// For length [11, 23], we hope to get the results of id 10 and 22, in fact.
int lastTokenIdx = lastTokenIds[seqIdx] - 1;
// The output pointer.
T* lastTokenLogitsPtr = &lastTokenLogits[seqIdx * beamWidth * vocabSizePadded];
// The input pointer.
T const* logitsPtr = &logits[lastTokenIdx * vocabSizePadded];
// The threads in the block collaborate to copy the logits.
for (int idx = threadIdx.x; idx < vocabSizePadded; idx += blockDim.x)
{
T value = logitsPtr[idx];
for (int beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
lastTokenLogitsPtr[beamIdx * vocabSizePadded + idx] = value;
}
}
}
template <typename T>
void invokeGatherLastTokenLogits(
ITensor& output, ITensor const& input, ITensor const& lastTokenIds, CudaStream const& stream)
{
auto const& outputShape = output.getShape();
auto const batchSize = static_cast<std::uint32_t>(outputShape.d[0]);
auto const beamWidth = static_cast<std::uint32_t>(outputShape.d[1]);
auto const vocabSizePadded = static_cast<std::uint32_t>(outputShape.d[2]);
auto const& inputShape = input.getShape();
auto const maxInputLength = static_cast<std::uint32_t>(inputShape.d[1]);
TLLM_CHECK_WITH_INFO(inputShape.d[0] == batchSize, "Invalid input shape: dim[0]");
TLLM_CHECK_WITH_INFO(inputShape.d[2] == vocabSizePadded, "Invalid input shape: dim[2]");
dim3 const blockSize{256, 1};
dim3 const gridSize{static_cast<std::uint32_t>(batchSize), 1};
gatherLastTokenLogitsKernel<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<T>(output), bufferCast<T>(input),
bufferCast<int32_t>(lastTokenIds), static_cast<std::uint32_t>(maxInputLength),
static_cast<std::uint32_t>(beamWidth), vocabSizePadded);
}
void gatherLastTokenLogits(ITensor& output, ITensor const& input, ITensor const& lastTokenIds, CudaStream const& stream)
{
switch (input.getDataType())
{
case nvinfer1::DataType::kFLOAT: invokeGatherLastTokenLogits<float>(output, input, lastTokenIds, stream); break;
case nvinfer1::DataType::kHALF: invokeGatherLastTokenLogits<half>(output, input, lastTokenIds, stream); break;
#ifdef ENABLE_BF16
case nvinfer1::DataType::kBF16:
invokeGatherLastTokenLogits<__nv_bfloat16>(output, input, lastTokenIds, stream);
break;
#endif // ENABLE_BF16
#ifdef ENABLE_FP8
case nvinfer1::DataType::kFP8:
invokeGatherLastTokenLogits<__nv_fp8_e4m3>(output, input, lastTokenIds, stream);
break;
#endif // ENABLE_FP8
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
// In the following kernel, we launch a grid with (microBatchSize * beamWidth, outputLen) blocks of threads. Each thread
// block copies a `vocabSizePadded` length logits tensor from the "inputLogits (microBatchSize, beamWidth,
// vocabSizePadded)" to the "outputGenerationLogits (batchSize, beamWidth, outputLen, vocabSizePadded)"
template <typename T>
__global__ void mergeLogitsFragmentsKernel(T* output, T** fragmentsVector, int const outputLen, int firstBatchSlotIdx,
int microBatchSize, int beamWidth, int vocabSizePadded, int stepOffset)
{
// output: shape: [batchSize, beamWidth, outputLen, vocabSize]
// inputVecor.at(i): shape: [microBatchSize, beamWidth, vocabSize]
// Current step
int curStep = blockIdx.y;
// The relatively batch slot index that this thread block in microBatchSize.
int relativeBatchSlotIdx = blockIdx.x / beamWidth;
// The Absolute batch slot index in batchSize.
int absoluteBatchSlotIdx = firstBatchSlotIdx + relativeBatchSlotIdx;
// The beam index that this thread block process
int mbeamIdx = blockIdx.x % beamWidth;
// The output pointer
unsigned int const outputOffset
= (absoluteBatchSlotIdx * beamWidth * outputLen + mbeamIdx * outputLen + curStep + stepOffset)
* vocabSizePadded;
T* outputPtr = &output[outputOffset];
unsigned int const inputOffset = (relativeBatchSlotIdx * beamWidth + mbeamIdx) * vocabSizePadded;
// The input pointer.
T const* inputPtr = &fragmentsVector[curStep][inputOffset];
// The threads in the block collaborate to copy the logits.
for (int idx = threadIdx.x; idx < vocabSizePadded; idx += blockDim.x)
{
outputPtr[idx] = inputPtr[idx];
}
}
template <typename T>
void invokeMergeLogitsFragments(BufferManager const& bufferManager, ITensor& output,
std::vector<TensorPtr> fragmentsVector, ITensor& cachePointerDevice, ITensor& cachePointerHost,
SizeType32 firstBatchSlotIdx, SizeType32 const microBatchSize, SizeType32 const beamWidth, CudaStream const& stream,
int stepOffset)
{
size_t fragmentsVectorSize = fragmentsVector.size();
auto cachePointerHostPtr = bufferCast<T*>(cachePointerHost);
for (int i = 0; i < fragmentsVectorSize; i++)
{
cachePointerHostPtr[i] = static_cast<T*>(fragmentsVector.at(i)->data());
}
bufferManager.copy(cachePointerHost, cachePointerDevice);
dim3 blockSize(256);
dim3 gridSize{(unsigned int) (microBatchSize * beamWidth), (unsigned int) (fragmentsVectorSize)};
auto const& outputShape = output.getShape();
auto const vocabSizePadded = static_cast<SizeType32>(outputShape.d[outputShape.nbDims - 1]);
auto const outputLen = static_cast<SizeType32>(outputShape.d[outputShape.nbDims - 2]);
TLLM_CHECK_WITH_INFO(outputLen >= fragmentsVectorSize, "Fragments size does not match outputLen size");
mergeLogitsFragmentsKernel<T><<<gridSize, blockSize, 0, stream.get()>>>(static_cast<T*>(output.data()),
static_cast<T**>(cachePointerDevice.data()), outputLen, firstBatchSlotIdx, microBatchSize, beamWidth,
vocabSizePadded, stepOffset);
}
void mergeLogitsFragments(BufferManager const& bufferManager, ITensor& output, std::vector<TensorPtr> fragmentsVector,
ITensor& cachePointerDevice, ITensor& cachePointerHost, SizeType32 firstBatchSlotIdx,
SizeType32 const microBatchSize, SizeType32 const beamWidth, CudaStream const& stream, int stepOffset)
{
switch (output.getDataType())
{
case nvinfer1::DataType::kFLOAT:
invokeMergeLogitsFragments<float>(bufferManager, output, fragmentsVector, cachePointerDevice, cachePointerHost,
firstBatchSlotIdx, microBatchSize, beamWidth, stream, stepOffset);
break;
case nvinfer1::DataType::kHALF:
invokeMergeLogitsFragments<half>(bufferManager, output, fragmentsVector, cachePointerDevice, cachePointerHost,
firstBatchSlotIdx, microBatchSize, beamWidth, stream, stepOffset);
break;
#ifdef ENABLE_BF16
case nvinfer1::DataType::kBF16:
invokeMergeLogitsFragments<__nv_bfloat16>(bufferManager, output, fragmentsVector, cachePointerDevice,
cachePointerHost, firstBatchSlotIdx, microBatchSize, beamWidth, stream, stepOffset);
break;
#endif // ENABLE_BF16
#ifdef ENABLE_FP8
case nvinfer1::DataType::kFP8:
invokeMergeLogitsFragments<__nv_fp8_e4m3>(bufferManager, output, fragmentsVector, cachePointerDevice,
cachePointerHost, firstBatchSlotIdx, microBatchSize, beamWidth, stream, stepOffset);
break;
#endif // ENABLE_FP8
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
}
}
void invokeUpdateKVBlockArrayDraftTokenLocation(ITensor const& seqAcceptedDraftTokenOffsets,
ITensor const& packedAcceptedDraftTokensIndices, ITensor const& pastKeyValueLengths, void* const* pointerArray,
::tensorrt_llm::kernels::KVCacheIndex const* offsetArray, SizeType32 layerCount, SizeType32 seqCount,
SizeType32 numKVHeads, SizeType32 sizeInBytesPerKVHead, SizeType32 rewindDraftTokenCommonCount,
int* rewindDraftTokenSeparateAdjustments, ITensor const& seqSlotRemapping, SizeType32 maxKVCacheLen,
SizeType32 maxBlocksPerSeq, SizeType32 tokensPerBlock, cudaStream_t stream)
{
tensorrt_llm::kernels::speculative_decoding::updateKVBlockArrayDraftTokenLocation(
bufferCast<SizeType32>(seqAcceptedDraftTokenOffsets), bufferCast<SizeType32>(packedAcceptedDraftTokensIndices),
bufferCast<SizeType32>(pastKeyValueLengths), pointerArray, offsetArray, layerCount, seqCount, numKVHeads,
sizeInBytesPerKVHead, rewindDraftTokenCommonCount, rewindDraftTokenSeparateAdjustments,
bufferCast<SizeType32>(seqSlotRemapping), maxKVCacheLen, maxBlocksPerSeq, tokensPerBlock, stream);
}
} // namespace tensorrt_llm::runtime::kernels