mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Kota Tsuyuzaki <bloodeagle40234@gmail.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>
2089 lines
90 KiB
Python
2089 lines
90 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import functools
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import List, Optional
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
import torch.nn as nn
|
|
from tqdm import tqdm
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
|
from transformers.pytorch_utils import Conv1D
|
|
|
|
from ..._utils import pad_vocab_size, release_gc, str_dtype_to_torch
|
|
from ...logger import logger
|
|
from ...quantization import QuantAlgo
|
|
from ..convert_utils import (iterate_shard_files, load_calib_dataset,
|
|
load_state_dict, retrieved_layer_index_from_name)
|
|
from ..modeling_utils import PretrainedConfig
|
|
from .config import LLaMAConfig
|
|
|
|
|
|
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
|
|
"""
|
|
This function has two purposes:
|
|
- compute quantized weights, scaled either per-tensor or per-column
|
|
- compute scaling factors
|
|
|
|
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
|
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
|
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
|
|
|
Here is the list of what we need (T means per-tensor, C per-column):
|
|
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
|
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
|
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
|
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
|
to quant range (int8) (used for CUBLAS) (T, C)
|
|
|
|
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
|
but then the model would change depending on the number of GPUs used.
|
|
|
|
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
|
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
|
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
|
"""
|
|
|
|
# compute weight scaling factors for fp->int8 and int8->fp
|
|
if is_qkv and not multi_query_mode:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
|
dim=-1, keepdims=True)[0]
|
|
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3, -1)
|
|
elif is_qkv and multi_query_mode:
|
|
hidden_dim = weights.shape[0]
|
|
local_dim = act_range["w"].shape[0]
|
|
kv_dim = (local_dim - hidden_dim) // 2
|
|
scale_w_q = act_range["w"][0:hidden_dim]
|
|
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
|
scale_w_v = act_range["w"][-kv_dim:]
|
|
|
|
scale_w_qkv_t = torch.concat([
|
|
scale_w_q.max(dim=0, keepdim=True)[0],
|
|
scale_w_k.max(dim=0, keepdim=True)[0],
|
|
scale_w_v.max(dim=0, keepdim=True)[0]
|
|
])
|
|
|
|
scale_w_orig_quant_t = 127. / scale_w_qkv_t
|
|
scale_w_orig_quant_c = 127. / act_range["w"]
|
|
else:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].max()
|
|
scale_w_orig_quant_c = 127. / act_range["w"]
|
|
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
|
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
|
|
|
scale_w_orig_quant_c = scale_w_orig_quant_c.to(torch.float32)
|
|
scale_w_orig_quant_t = scale_w_orig_quant_t.to(torch.float32)
|
|
|
|
# compute the rest of needed scaling factors
|
|
scale_x_orig_quant_t = 127. / act_range["x"].max()
|
|
scale_y_orig_quant_t = 127. / act_range["y"].max()
|
|
scale_y_quant_orig_t = act_range["y"].max() / 127.
|
|
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_t)
|
|
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_c)
|
|
if is_qkv and not multi_query_mode:
|
|
scale_y_accum_quant_t = torch.broadcast_to(scale_y_accum_quant_t,
|
|
scale_w_orig_quant_c.shape)
|
|
scale_w_quant_orig_t = torch.broadcast_to(scale_w_quant_orig_t,
|
|
scale_w_orig_quant_c.shape)
|
|
if is_qkv and multi_query_mode:
|
|
scale_q_y_accum_t = torch.broadcast_to(scale_y_accum_quant_t[0],
|
|
scale_w_q.shape)
|
|
scale_k_y_accum_t = torch.broadcast_to(scale_y_accum_quant_t[1],
|
|
scale_w_k.shape)
|
|
scale_v_y_accum_t = torch.broadcast_to(scale_y_accum_quant_t[2],
|
|
scale_w_v.shape)
|
|
scale_y_accum_quant_t = torch.concat(
|
|
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
|
scale_w_quant_orig_t = torch.concat([
|
|
torch.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
|
torch.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
|
torch.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
|
])
|
|
|
|
to_i8 = lambda x: x.round().clip(-127, 127).to(torch.int8)
|
|
|
|
if is_qkv and multi_query_mode:
|
|
weight_int8 = to_i8(weights / scale_w_quant_orig_t)
|
|
else:
|
|
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
|
return {
|
|
"weight.int8": weight_int8,
|
|
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
|
"scale_x_orig_quant": scale_x_orig_quant_t.to(torch.float32),
|
|
"scale_w_quant_orig": scale_w_quant_orig_t.to(torch.float32),
|
|
"scale_w_quant_orig.col": scale_w_quant_orig_c.to(torch.float32),
|
|
"scale_y_accum_quant": scale_y_accum_quant_t.to(torch.float32),
|
|
"scale_y_accum_quant.col": scale_y_accum_quant_c.to(torch.float32),
|
|
"scale_y_quant_orig": scale_y_quant_orig_t.to(torch.float32),
|
|
}
|
|
|
|
|
|
@torch.no_grad()
|
|
def apply_smoothing(scales,
|
|
gemm_weights,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
dtype=torch.float32,
|
|
layernorm_1p=False):
|
|
if not isinstance(gemm_weights, list):
|
|
gemm_weights = [gemm_weights]
|
|
|
|
if layernorm_weights is not None:
|
|
assert layernorm_weights.numel() == scales.numel()
|
|
layernorm_weights.div_(scales).to(dtype)
|
|
if layernorm_bias is not None:
|
|
assert layernorm_bias.numel() == scales.numel()
|
|
layernorm_bias.div_(scales).to(dtype)
|
|
if layernorm_1p:
|
|
layernorm_weights += (1 / scales) - 1
|
|
|
|
for gemm in gemm_weights:
|
|
gemm.mul_(scales.view(1, -1)).to(dtype)
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_gemm(gemm_weights,
|
|
act_scales,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
alpha=0.5,
|
|
weight_scales=None):
|
|
if not isinstance(gemm_weights, list):
|
|
gemm_weights = [gemm_weights]
|
|
orig_dtype = gemm_weights[0].dtype
|
|
|
|
for gemm in gemm_weights:
|
|
# gemm_weights are expected to be transposed
|
|
assert gemm.shape[1] == act_scales.numel()
|
|
|
|
if weight_scales is None:
|
|
weight_scales = torch.cat(
|
|
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
|
dim=0)
|
|
weight_scales = weight_scales.max(dim=0)[0]
|
|
weight_scales.to(float).clamp(min=1e-5)
|
|
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
|
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
|
|
|
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
|
|
orig_dtype)
|
|
|
|
return scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_gemm_fc1_gate(fc1_weights,
|
|
gate_weights,
|
|
act_scales,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
alpha=0.5,
|
|
weight_scales=None):
|
|
gemm_weights = []
|
|
if not isinstance(fc1_weights, list):
|
|
fc1_weights = [fc1_weights]
|
|
if not isinstance(gate_weights, list):
|
|
gate_weights = [gate_weights]
|
|
|
|
for i in range(len(fc1_weights)):
|
|
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
|
|
gemm_weights.append(gemm_weight)
|
|
|
|
orig_dtype = gemm_weights[0].dtype
|
|
|
|
for gemm in gemm_weights:
|
|
# gemm_weights are expected to be transposed
|
|
assert gemm.shape[1] == act_scales.numel()
|
|
|
|
if weight_scales is None:
|
|
weight_scales = torch.cat(
|
|
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
|
dim=0)
|
|
weight_scales = weight_scales.max(dim=0)[0]
|
|
weight_scales.to(float).clamp(min=1e-5)
|
|
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
|
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
|
|
|
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
|
|
layernorm_bias, orig_dtype)
|
|
|
|
return scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_llama_model(model, scales, alpha, llama_qkv_para, llama_smoother):
|
|
# Smooth the activation and weights with smoother = $\diag{s}$
|
|
for name, module in model.named_modules():
|
|
if not isinstance(
|
|
module,
|
|
LlamaDecoderLayer) and not module.__class__.__name__ in [
|
|
"InternLMDecoderLayer", "MistralDecoderLayer"
|
|
]:
|
|
continue
|
|
# qkv_proj
|
|
layer_name_q = name + ".self_attn.q_proj"
|
|
layer_name_k = name + ".self_attn.k_proj"
|
|
layer_name_v = name + ".self_attn.v_proj"
|
|
layer_name_qkv = name + ".self_attn.qkv_proj"
|
|
|
|
weight = torch.cat([
|
|
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
|
|
module.self_attn.v_proj.weight
|
|
],
|
|
dim=0)
|
|
|
|
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
|
|
module.input_layernorm.weight, None, alpha)
|
|
|
|
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
|
|
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
|
|
scales[layer_name_qkv]["y"] = torch.cat([
|
|
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
|
|
scales[layer_name_v]["y"]
|
|
],
|
|
dim=0)
|
|
|
|
# see transpose_weights function
|
|
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
|
|
|
|
# =================================================================
|
|
layer_name = name + ".self_attn.o_proj"
|
|
smoother = smooth_gemm(module.self_attn.o_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
llama_smoother[layer_name] = smoother.float()
|
|
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
fc1_layer_name = name + ".mlp.gate_proj"
|
|
gate_layer_name = name + ".mlp.up_proj"
|
|
|
|
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
|
|
module.mlp.up_proj.weight,
|
|
scales[fc1_layer_name]["x"],
|
|
module.post_attention_layernorm.weight,
|
|
None, alpha)
|
|
|
|
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
|
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
|
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
layer_name = name + ".mlp.down_proj"
|
|
smoother = smooth_gemm(module.mlp.down_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
llama_smoother[layer_name] = smoother.float()
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
if hasattr(module, 'residual_mlp'):
|
|
fc1_layer_name = name + ".residual_mlp.w1"
|
|
gate_layer_name = name + ".residual_mlp.w3"
|
|
|
|
smoother = smooth_gemm_fc1_gate(module.residual_mlp.w1.weight,
|
|
module.residual_mlp.w3.weight,
|
|
scales[fc1_layer_name]["x"],
|
|
module.residual_layernorm.weight,
|
|
None, alpha)
|
|
|
|
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
|
scales[fc1_layer_name]["w"] = module.residual_mlp.w1.weight.abs(
|
|
).max(dim=1)[0]
|
|
|
|
scales[gate_layer_name][
|
|
"x"] = scales[gate_layer_name]["x"] / smoother
|
|
scales[gate_layer_name]["w"] = module.residual_mlp.w3.weight.abs(
|
|
).max(dim=1)[0]
|
|
|
|
# ==================================================================
|
|
layer_name = name + ".residual_mlp.w2"
|
|
smoother = smooth_gemm(module.residual_mlp.w2.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
llama_smoother[layer_name] = smoother.float()
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.residual_mlp.w2.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
|
|
@torch.no_grad()
|
|
def capture_activation_range(model,
|
|
tokenizer,
|
|
dataset,
|
|
num_samples=512,
|
|
seq_len=512):
|
|
model.eval()
|
|
device = next(model.parameters()).device
|
|
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def stat_tensor(name, tensor, act_scales, key):
|
|
hidden_dim = tensor.shape[-1]
|
|
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
|
comming_max = torch.max(tensor, dim=0)[0].float()
|
|
|
|
if act_scales[name][key] is None:
|
|
act_scales[name][key] = comming_max
|
|
else:
|
|
act_scales[name][key] = torch.max(act_scales[name][key],
|
|
comming_max)
|
|
|
|
def stat_input_hook(m, x, y, name):
|
|
if isinstance(x, tuple):
|
|
x = x[0]
|
|
stat_tensor(name, x, act_scales, "x")
|
|
stat_tensor(name, y, act_scales, "y")
|
|
|
|
if act_scales[name]["w"] is None:
|
|
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
|
|
None).max(dim=1)[0]
|
|
|
|
hooks = []
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
|
hooks.append(
|
|
m.register_forward_hook(
|
|
functools.partial(stat_input_hook, name=name)))
|
|
|
|
for i in tqdm(range(num_samples), desc="calibrating model"):
|
|
datapoint = dataset[i:i + 1]
|
|
line = copy.copy(datapoint)
|
|
line[0] = line[0] + ' TL;DR: '
|
|
line[0] = line[0].strip()
|
|
line[0] = line[0].replace(" n't", "n't")
|
|
input_ids = tokenizer(line,
|
|
return_tensors="pt",
|
|
max_length=seq_len,
|
|
padding=True,
|
|
truncation=True).input_ids.to(device)
|
|
model(input_ids)
|
|
for h in hooks:
|
|
h.remove()
|
|
return act_scales
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return torch.chunk(v, tp_size)[idx].contiguous()
|
|
else:
|
|
return torch.chunk(v, tp_size, dim=dim)[idx]
|
|
|
|
|
|
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV matrix according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
|
|
return split_v
|
|
|
|
|
|
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV bias according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
|
|
return split_v
|
|
|
|
|
|
def split_matrix_tp(v, tensor_parallel, rank, dim):
|
|
return split(v, tensor_parallel, rank, dim=dim)
|
|
|
|
|
|
def get_weight(config, prefix, dtype):
|
|
if config[prefix + '.weight'].dtype != dtype:
|
|
config[prefix + '.weight'].data = config[prefix + '.weight'].to(dtype)
|
|
return config[prefix + '.weight'].detach()
|
|
|
|
|
|
def get_bias(config, prefix, dtype):
|
|
if config[prefix + '.bias'].dtype != dtype:
|
|
config[prefix + '.bias'].data = config[prefix + '.bias'].to(dtype)
|
|
return config[prefix + '.bias'].detach()
|
|
|
|
|
|
def get_weight_and_bias(config, prefix, dtype):
|
|
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
|
|
|
|
|
|
def get_tllm_linear_weight(weight,
|
|
prefix,
|
|
bias=None,
|
|
use_weight_only=False,
|
|
plugin_weight_only_quant_type=torch.int8,
|
|
dtype='float32',
|
|
use_gemm_woq_plugin=True,
|
|
postfix='weight',
|
|
quant_scale_name=None):
|
|
results = {}
|
|
if use_weight_only:
|
|
if weight.dim() > 2:
|
|
v = weight.transpose(1, 2).contiguous()
|
|
else:
|
|
v = weight.t().contiguous()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v.cpu(), plugin_weight_only_quant_type)
|
|
if not use_gemm_woq_plugin:
|
|
results[prefix + postfix] = v.to(dtype)
|
|
else:
|
|
results[prefix + postfix] = processed_torch_weights
|
|
if quant_scale_name is not None:
|
|
results[quant_scale_name] = torch_weight_scales
|
|
else:
|
|
results[prefix + 'per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
results[prefix + postfix] = weight
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def dup_kv_weight(v, num_head, tp_size):
|
|
assert tp_size % num_head == 0
|
|
reps = tp_size // num_head
|
|
head_size = v.shape[0] // num_head
|
|
v = v.reshape(num_head, head_size,
|
|
-1)[:, None, :, :].expand(num_head, reps, head_size,
|
|
v.shape[1])
|
|
return v.reshape(num_head * reps * head_size, -1).clone().detach()
|
|
|
|
|
|
def get_tllm_linear_sq_weight(vals,
|
|
prefix,
|
|
shape,
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=False,
|
|
per_channel=False,
|
|
last_prefix=None,
|
|
bias=None,
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=0,
|
|
cat_dim=0,
|
|
multi_query_mode=False):
|
|
results = {}
|
|
|
|
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
|
|
q, k, v = torch.split(data, [local_dim, head_size, head_size], dim=-1)
|
|
q_split = torch.chunk(q, tp_size, dim=-1)
|
|
k_split = torch.chunk(k, tp_size, dim=-1)
|
|
v_split = torch.chunk(v, tp_size, dim=-1)
|
|
return [
|
|
torch.concat((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
|
for ii in range(tp_size)
|
|
][cur_rank]
|
|
|
|
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
|
|
|
if per_token:
|
|
if per_channel:
|
|
original_weights = torch.Tensor(vals["weight.int8.col"]).cuda()
|
|
else:
|
|
original_weights = torch.Tensor(vals["weight.int8"]).cuda()
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = torch.chunk(original_weights,
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix + 'weight'] = cur_weights.t().contiguous()
|
|
if smoother_value is None:
|
|
results[last_prefix] = torch.Tensor([1.0]).to(torch.float32).cuda()
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = torch.chunk(
|
|
vals["scale_w_quant_orig.col"],
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_w_quant_orig"]
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = torch.chunk(
|
|
vals["scale_w_quant_orig"],
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = cur_per_channel_value.reshape(
|
|
col_shape).contiguous()
|
|
else:
|
|
if per_channel:
|
|
original_weights = torch.Tensor(vals["weight.int8.col"]).cuda()
|
|
else:
|
|
original_weights = torch.Tensor(vals["weight.int8"]).cuda()
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = torch.chunk(original_weights,
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix + 'weight'] = cur_weights.t().contiguous()
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = torch.chunk(
|
|
vals["scale_y_accum_quant.col"],
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_y_accum_quant"]
|
|
# QKV is always per_channel
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = torch.chunk(
|
|
vals["scale_y_accum_quant"],
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
|
|
results[prefix +
|
|
'per_channel_scale'] = torch.Tensor(cur_per_channel_value).to(
|
|
torch.float32).reshape(col_shape).contiguous().cuda()
|
|
results[prefix + 'act_scale'] = torch.Tensor([[
|
|
vals['scale_y_quant_orig']
|
|
]]).to(torch.float32).contiguous().cuda()
|
|
results[last_prefix] = torch.Tensor([vals['scale_x_orig_quant']]).to(
|
|
torch.float32).contiguous().cuda()
|
|
|
|
if smoother_value is not None:
|
|
cur_smoother_value = torch.chunk(smoother_value,
|
|
tensor_parallel,
|
|
dim=cat_dim)[rank]
|
|
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
|
smoother_shape).contiguous().to(torch.float32)
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def load_hf_llama(model_dir: str, load_model_on_cpu: bool = False):
|
|
if "vila" in model_dir:
|
|
sys.path.append(model_dir + "/../VILA")
|
|
from llava.model import LlavaLlamaConfig, LlavaLlamaModel # noqa
|
|
from transformers import AutoModel
|
|
model = AutoModel.from_pretrained(
|
|
model_dir,
|
|
device_map='auto',
|
|
trust_remote_code=True,
|
|
)
|
|
return model.llm
|
|
|
|
hf_config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
|
model_cls = AutoModelForCausalLM
|
|
if hf_config.model_type == "llava":
|
|
from transformers import LlavaForConditionalGeneration
|
|
model_cls = LlavaForConditionalGeneration
|
|
model = model_cls.from_pretrained(
|
|
model_dir,
|
|
device_map='auto' if not load_model_on_cpu else 'cpu',
|
|
torch_dtype='auto',
|
|
trust_remote_code=True,
|
|
)
|
|
if hf_config.model_type == "llava":
|
|
model = model.language_model
|
|
return model
|
|
|
|
|
|
def load_weights_from_hf_model(hf_model,
|
|
config: LLaMAConfig,
|
|
act_range: Optional[dict] = None,
|
|
qkv_para: Optional[dict] = None,
|
|
smoother: Optional[dict] = None):
|
|
quant_algo = config.quantization.quant_algo
|
|
use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16]
|
|
if quant_algo == QuantAlgo.W8A16:
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_algo == QuantAlgo.W4A16:
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
else:
|
|
plugin_weight_only_quant_type = None
|
|
use_gemm_woq_plugin = (not config.disable_weight_only_quant_plugin)
|
|
|
|
use_smooth_quant = config.quantization.use_plugin_sq
|
|
per_channel = use_smooth_quant and 'PER_CHANNEL' in quant_algo
|
|
per_token = use_smooth_quant and 'PER_TOKEN' in quant_algo
|
|
int8_kv_cache = config.quantization.kv_cache_quant_algo == QuantAlgo.INT8
|
|
if use_smooth_quant or int8_kv_cache:
|
|
assert act_range is not None
|
|
assert qkv_para is not None
|
|
assert smoother is not None
|
|
|
|
weights = {}
|
|
tik = time.time()
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, config.dtype)
|
|
|
|
mapping = config.mapping
|
|
moe_config = config.moe
|
|
mha_mode = (config.num_key_value_heads == config.num_attention_heads)
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
|
|
def convert_layer(l):
|
|
prefix = f'model.layers.{l}.'
|
|
tllm_prex = f'transformer.layers.{l - layers_range[0]}.'
|
|
q_weight = get_weight(model_params, prefix + 'self_attn.q_proj', dtype)
|
|
k_weight = get_weight(model_params, prefix + 'self_attn.k_proj', dtype)
|
|
v_weight = get_weight(model_params, prefix + 'self_attn.v_proj', dtype)
|
|
|
|
if not mha_mode:
|
|
if config.num_key_value_heads < mapping.tp_size:
|
|
# duplicate the KV heads up to tensor_parallel
|
|
k_weight = dup_kv_weight(k_weight, config.num_key_value_heads,
|
|
mapping.tp_size)
|
|
v_weight = dup_kv_weight(v_weight, config.num_key_value_heads,
|
|
mapping.tp_size)
|
|
assert (k_weight.shape[0] %
|
|
(mapping.tp_size * config.head_size)) == 0
|
|
assert (v_weight.shape[0] %
|
|
(mapping.tp_size * config.head_size)) == 0
|
|
|
|
wq = split(q_weight, mapping.tp_size, mapping.tp_rank)
|
|
wk = split(k_weight, mapping.tp_size, mapping.tp_rank)
|
|
wv = split(v_weight, mapping.tp_size, mapping.tp_rank)
|
|
|
|
split_v = torch.concat((wq, wk, wv))
|
|
|
|
else:
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
|
|
split_v = split_qkv_tp(qkv_weight, config.num_attention_heads,
|
|
config.hidden_size, mapping.tp_size,
|
|
mapping.tp_rank)
|
|
|
|
if prefix + 'self_attn.q_proj.bias' in model_params:
|
|
# only used in Internlm 7B models
|
|
q_bias = get_bias(model_params, prefix + 'self_attn.q_proj', dtype)
|
|
k_bias = get_bias(model_params, prefix + 'self_attn.k_proj', dtype)
|
|
v_bias = get_bias(model_params, prefix + 'self_attn.v_proj', dtype)
|
|
qkv_bias = torch.cat((q_bias, k_bias, v_bias))
|
|
split_bias_v = split_qkv_bias_tp(qkv_bias,
|
|
config.num_attention_heads,
|
|
config.hidden_size,
|
|
mapping.tp_size, mapping.tp_rank)
|
|
else:
|
|
split_bias_v = None
|
|
|
|
if use_smooth_quant:
|
|
qkv_weight = qkv_para[prefix + 'self_attn.qkv_proj']
|
|
qkv_out_dim = qkv_weight.shape[1]
|
|
|
|
if not mha_mode:
|
|
local_dim = qkv_weight.shape[0]
|
|
kv_hidden_size = (qkv_weight.shape[-1] - local_dim) // 2
|
|
qkv_weight = qkv_weight.reshape(local_dim,
|
|
local_dim + 2 * kv_hidden_size)
|
|
else:
|
|
qkv_weight = qkv_weight.reshape(config.hidden_size, 3,
|
|
config.hidden_size)
|
|
|
|
int8_weights = generate_int8(qkv_weight,
|
|
act_range.get(prefix +
|
|
'self_attn.qkv_proj'),
|
|
is_qkv=True,
|
|
multi_query_mode=bool(not mha_mode))
|
|
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(int8_weights,
|
|
tllm_prex + 'attention.qkv.',
|
|
[1, qkv_out_dim // mapping.tp_size],
|
|
mapping.tp_size,
|
|
is_qkv=True,
|
|
bias=split_bias_v,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'input_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1,
|
|
multi_query_mode=bool(not mha_mode)))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.',
|
|
split_bias_v, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if int8_kv_cache:
|
|
qkv_y = torch.cat([
|
|
act_range.get(prefix + 'self_attn.q_proj')["y"],
|
|
act_range.get(prefix + 'self_attn.k_proj')["y"],
|
|
act_range.get(prefix + 'self_attn.v_proj')["y"]
|
|
],
|
|
dim=0)
|
|
|
|
int8_kv_scales = qkv_y.max() / 127.
|
|
|
|
kv_cache_weights = {}
|
|
|
|
kv_cache_weights[
|
|
tllm_prex +
|
|
'attention.kv_cache_scaling_factor'] = int8_kv_scales.reshape(
|
|
[1])
|
|
|
|
weights.update(kv_cache_weights)
|
|
|
|
attn_dense_weight = get_weight(model_params,
|
|
prefix + 'self_attn.o_proj', dtype)
|
|
split_v = split_matrix_tp(attn_dense_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
|
|
if prefix + 'self_attn.o_proj.bias' in model_params:
|
|
attn_dense_bias = get_bias(model_params,
|
|
prefix + 'self_attn.o_proj', dtype)
|
|
else:
|
|
attn_dense_bias = None
|
|
if use_smooth_quant:
|
|
attn_dense_weight = attn_dense_weight.t()
|
|
int8_weights = generate_int8(
|
|
attn_dense_weight, act_range.get(prefix + 'self_attn.o_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'attention.dense.', [1, config.hidden_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
bias=attn_dense_bias,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'attention.quantization_scaling_factor',
|
|
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
|
|
smoother_shape=[1, config.hidden_size // mapping.tp_size],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
|
|
attn_dense_bias, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if moe_config.has_moe():
|
|
rank_experts = list(range(moe_config.num_experts))
|
|
if moe_config.tp_mode == moe_config.ParallelismMode.EXPERT_PARALLEL:
|
|
rank_experts = mapping.ep_experts(moe_config.num_experts)
|
|
for suffix in ["w1", "w2", "w3"]:
|
|
model_params[f'model.layers.{l}.block_sparse_moe.experts.{suffix}.weight'] = \
|
|
torch.stack([model_params[f'model.layers.{l}.block_sparse_moe.experts.{expert}.{suffix}.weight'].detach()
|
|
for expert in rank_experts])
|
|
w3 = model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w3.weight']
|
|
w2 = model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w2.weight']
|
|
w1 = model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w1.weight']
|
|
if moe_config.tp_mode == moe_config.ParallelismMode.TENSOR_PARALLEL:
|
|
w3 = split(w3, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
w2 = split(w2, mapping.tp_size, mapping.tp_rank, dim=2)
|
|
w1 = split(w1, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
|
|
model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w3w1.weight'] = torch.concat(
|
|
[w3, w1], dim=-2)
|
|
|
|
model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w2.weight'] = w2
|
|
|
|
## block_sparse_moe.experts.w2.weight
|
|
moe_experts_w2_weights = get_weight(
|
|
model_params, prefix + 'block_sparse_moe.experts.w2', dtype)
|
|
weights.update(
|
|
get_tllm_linear_weight(moe_experts_w2_weights,
|
|
tllm_prex + 'mlp.proj.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
##block_sparse_moe.experts.w3w1.weight
|
|
moe_experts_w3w1_weights = get_weight(
|
|
model_params, prefix + 'block_sparse_moe.experts.w3w1', dtype)
|
|
weights.update(
|
|
get_tllm_linear_weight(moe_experts_w3w1_weights,
|
|
tllm_prex + 'mlp.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if config.residual_mlp:
|
|
residual_mlp_gate_weights = get_weight(
|
|
model_params, prefix + 'residual_mlp.w3', dtype)
|
|
if use_smooth_quant:
|
|
residual_mlp_gate_weights = residual_mlp_gate_weights.t()
|
|
int8_weights = generate_int8(
|
|
residual_mlp_gate_weights,
|
|
act_range.get(prefix + 'residual_mlp.w3'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'residual_mlp.gate.',
|
|
[1, config.hidden_size // mapping.tp_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
split_v = split_matrix_tp(residual_mlp_gate_weights,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v,
|
|
tllm_prex + 'residual_mlp.gate.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type,
|
|
dtype, use_gemm_woq_plugin))
|
|
|
|
residual_mlp_fc_weight = get_weight(model_params,
|
|
prefix + 'residual_mlp.w1',
|
|
dtype)
|
|
if use_smooth_quant:
|
|
residual_mlp_fc_weight = residual_mlp_fc_weight.t(
|
|
) #verified
|
|
int8_weights = generate_int8(
|
|
residual_mlp_fc_weight,
|
|
act_range.get(prefix + 'residual_mlp.w1'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'residual_mlp.fc.',
|
|
[1, config.hidden_size // mapping.tp_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
split_v = split_matrix_tp(residual_mlp_fc_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v,
|
|
tllm_prex + 'residual_mlp.fc.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type,
|
|
dtype, use_gemm_woq_plugin))
|
|
|
|
residual_mlp_proj_weight = get_weight(
|
|
model_params, prefix + 'residual_mlp.w2', dtype)
|
|
|
|
if use_smooth_quant:
|
|
residual_mlp_proj_weight = residual_mlp_proj_weight.t()
|
|
int8_weights = generate_int8(
|
|
residual_mlp_proj_weight,
|
|
act_range.get(prefix + 'residual_mlp.w2'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'residual_mlp.proj.',
|
|
[1, config.hidden_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'residual_mlp.quantization_scaling_factor',
|
|
smoother_value=smoother[prefix + 'residual_mlp.w2'],
|
|
smoother_shape=[
|
|
1, config.hidden_size // mapping.tp_size
|
|
],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
split_v = split_matrix_tp(residual_mlp_proj_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v,
|
|
tllm_prex + 'residual_mlp.proj.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type,
|
|
dtype, use_gemm_woq_plugin))
|
|
|
|
moe_experts_gate_weights = get_weight(
|
|
model_params, prefix + 'block_sparse_moe.gate', torch.float32)
|
|
weights.update(
|
|
get_tllm_linear_weight(
|
|
moe_experts_gate_weights,
|
|
tllm_prex + 'mlp.router.',
|
|
None,
|
|
False, # Router should never be quantized
|
|
plugin_weight_only_quant_type,
|
|
dtype,
|
|
use_gemm_woq_plugin))
|
|
else:
|
|
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.up_proj',
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_gate_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
if use_smooth_quant:
|
|
mlp_gate_weight = mlp_gate_weight.t()
|
|
int8_weights = generate_int8(
|
|
mlp_gate_weight, act_range.get(prefix + 'mlp.up_proj'))
|
|
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.gate.',
|
|
[1, config.intermediate_size // mapping.tp_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.gate.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
mlp_fc_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_fc_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
|
|
if use_smooth_quant:
|
|
mlp_fc_weight = mlp_fc_weight.t() #verified
|
|
int8_weights = generate_int8(
|
|
mlp_fc_weight, act_range.get(prefix + 'mlp.gate_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.fc.',
|
|
[1, config.intermediate_size // mapping.tp_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_proj_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
|
|
if use_smooth_quant:
|
|
mlp_proj_weight = mlp_proj_weight.t()
|
|
int8_weights = generate_int8(
|
|
mlp_proj_weight, act_range.get(prefix + 'mlp.down_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.proj.', [1, config.hidden_size],
|
|
mapping.tp_size,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'mlp.quantization_scaling_factor',
|
|
smoother_value=smoother[prefix + 'mlp.down_proj'],
|
|
smoother_shape=[
|
|
1, config.intermediate_size // mapping.tp_size
|
|
],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
# Layer norms do not use tensor parallelism
|
|
input_ln_weight = get_weight(model_params, prefix + 'input_layernorm',
|
|
dtype)
|
|
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
|
|
|
post_ln_weight = get_weight(model_params,
|
|
prefix + 'post_attention_layernorm', dtype)
|
|
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
|
|
|
if config.residual_mlp:
|
|
residual_ln_weight = get_weight(model_params,
|
|
prefix + 'residual_layernorm',
|
|
dtype)
|
|
weights[tllm_prex +
|
|
'residual_layernorm.weight'] = residual_ln_weight
|
|
|
|
cur_block_weights = [
|
|
weight_name for weight_name in model_params
|
|
if weight_name.find(prefix) != -1
|
|
]
|
|
for weight_name in cur_block_weights:
|
|
model_params[weight_name] = None
|
|
|
|
for l in layers_range:
|
|
convert_layer(l)
|
|
release_gc()
|
|
|
|
v = get_weight(model_params, 'model.embed_tokens', dtype)
|
|
if hf_model.config.tie_word_embeddings:
|
|
# lm_head.weight has the same weights as embedding
|
|
if mapping.is_last_pp_rank():
|
|
if config.vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
mapping.tp_size)
|
|
pad_width = vocab_size_padded - config.vocab_size
|
|
|
|
v = torch.nn.functional.pad(v, (0, 0, 0, pad_width), 'constant',
|
|
0)
|
|
weights['lm_head.weight'] = split(v, mapping.tp_size,
|
|
mapping.tp_rank)
|
|
|
|
if config.use_parallel_embedding:
|
|
v = split_matrix_tp(v,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=config.embedding_sharding_dim)
|
|
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = v
|
|
|
|
lm_head_weights = get_weight(model_params, 'lm_head', dtype)
|
|
|
|
if mapping.is_last_pp_rank():
|
|
if config.vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
mapping.tp_size)
|
|
pad_width = vocab_size_padded - config.vocab_size
|
|
|
|
lm_head_weights = torch.nn.functional.pad(lm_head_weights,
|
|
(0, 0, 0, pad_width),
|
|
'constant',
|
|
value=0)
|
|
weights['lm_head.weight'] = split_matrix_tp(lm_head_weights,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
ln_f_w = get_weight(model_params, 'model.norm', dtype)
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
def smooth_quant(model,
|
|
tokenizer,
|
|
dataset,
|
|
smoothquant: Optional[float] = None):
|
|
assert model is not None
|
|
act_range = {}
|
|
llama_qkv_para = {}
|
|
# smoother for inputs of self_attn.o_proj and mlp.down_proj
|
|
llama_smoother = {}
|
|
|
|
act_range = capture_activation_range(model, tokenizer, dataset)
|
|
if smoothquant is not None:
|
|
smooth_llama_model(model, act_range, smoothquant, llama_qkv_para,
|
|
llama_smoother)
|
|
return act_range, llama_qkv_para, llama_smoother
|
|
|
|
|
|
def quantize(hf_model_dir: str,
|
|
output_dir: str,
|
|
config: LLaMAConfig,
|
|
calib_dataset='cnn_dailymail'):
|
|
'''
|
|
Quantize the save the model as TRT-LLM checkpoint to output_dir
|
|
'''
|
|
#TODO: currently only smooth quant and kv cache quantization are supported, needs to support mode quant algorithm calling modelopt
|
|
|
|
with open(os.path.join(output_dir, 'config.json'), 'w') as f:
|
|
json.dump(config.to_dict(), f, indent=4)
|
|
|
|
mapping = config.mapping
|
|
assert mapping.rank == -1, "You shall call quantize only once in one rank, assert rank==-1 for precaution"
|
|
quant_config = config.quantization
|
|
|
|
use_smooth_quant = quant_config.use_plugin_sq
|
|
int8_kv_cache = quant_config.kv_cache_quant_algo == QuantAlgo.INT8
|
|
|
|
assert use_smooth_quant or int8_kv_cache, "Call from_hugging_face when there is no quantization"
|
|
if use_smooth_quant:
|
|
assert quant_config.smoothquant_val is not None, "A smooth value must be specified when using smooth quant"
|
|
|
|
assert hf_model_dir is not None
|
|
## only load and call smooth quant routine once for all ranks
|
|
hf_config = AutoConfig.from_pretrained(hf_model_dir, trust_remote_code=True)
|
|
assert "llava" not in hf_config.model_type, "Smooth quant llava/vila is not supported yet"
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
device_map='auto',
|
|
torch_dtype='auto' if not use_smooth_quant else torch.float16,
|
|
trust_remote_code=True)
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
|
|
"TOKENIZERS_PARALLELISM", "false")
|
|
tokenizer = AutoTokenizer.from_pretrained(hf_model_dir,
|
|
trust_remote_code=True,
|
|
use_fast=False,
|
|
padding_side='left')
|
|
|
|
dataset = load_calib_dataset(calib_dataset)
|
|
|
|
act_range, qkv_para, smoother = smooth_quant(hf_model, tokenizer, dataset,
|
|
quant_config.smoothquant_val)
|
|
|
|
for rank in range(mapping.world_size):
|
|
# To avoid changing the mapping arg in-place, also the given mapping from caller is rank agnostic, since quantize is called from only one rank
|
|
config = copy.deepcopy(config)
|
|
config.set_rank(rank)
|
|
weights = load_weights_from_hf_model(
|
|
hf_model,
|
|
config=config,
|
|
act_range=act_range,
|
|
qkv_para=qkv_para,
|
|
smoother=smoother,
|
|
)
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
|
|
del weights
|
|
|
|
|
|
class QkvWeightHelper:
|
|
""" A helper utility for loading QKV weights from sharded files. """
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.num_kv_heads = config.num_key_value_heads
|
|
self.tp_size = config.mapping.tp_size
|
|
self.tp_rank = config.mapping.tp_rank
|
|
self.is_mha = self.num_heads == self.num_kv_heads
|
|
self._qkv_weights = {}
|
|
|
|
@staticmethod
|
|
def is_qkv_weight(name):
|
|
for k in ['q_proj', 'k_proj', 'v_proj']:
|
|
if 'self_attn' in name and k in name:
|
|
return True
|
|
return False
|
|
|
|
def add_weight(self, i: int, name: str, weight: torch.Tensor):
|
|
if 'q_proj' in name:
|
|
tag = 'q'
|
|
elif 'k_proj' in name:
|
|
tag = 'k'
|
|
elif 'v_proj' in name:
|
|
tag = 'v'
|
|
else:
|
|
raise ValueError(f'Got an unexpected parameter of name {name}')
|
|
if i not in self._qkv_weights:
|
|
self._qkv_weights[i] = {}
|
|
self._qkv_weights[i][tag] = weight
|
|
|
|
def is_qkv_prepared(self, layer_idx):
|
|
if layer_idx not in self._qkv_weights:
|
|
return False
|
|
weights = self._qkv_weights[layer_idx]
|
|
return 'q' in weights and 'k' in weights and 'v' in weights
|
|
|
|
def split_qkv_weights(self, layer_idx):
|
|
if not self.is_qkv_prepared(layer_idx):
|
|
return None
|
|
weights = self._qkv_weights.pop(layer_idx) # to prevent memory leak.
|
|
q, k, v = (torch.tensor(weights[t]) for t in ['q', 'k', 'v'])
|
|
|
|
if not self.is_mha:
|
|
head_size = self.hidden_size // self.num_heads
|
|
if self.num_kv_heads < self.tp_size:
|
|
# duplicate the KV heads up to tensor_parallel
|
|
k = dup_kv_weight(k, self.num_kv_heads, self.tp_size)
|
|
v = dup_kv_weight(v, self.num_kv_heads, self.tp_size)
|
|
assert k.shape[0] % (self.tp_size * head_size) == 0
|
|
assert v.shape[0] % (self.tp_size * head_size) == 0
|
|
wq = split(q, self.tp_size, self.tp_rank)
|
|
wk = split(k, self.tp_size, self.tp_rank)
|
|
wv = split(v, self.tp_size, self.tp_rank)
|
|
fused_qkv = torch.cat((wq, wk, wv), dim=0)
|
|
else:
|
|
qkv = torch.cat([q, k, v], dim=0)
|
|
qkv = qkv.reshape(3, q.shape[0], q.shape[1])
|
|
fused_qkv = split(qkv, self.tp_size, self.tp_rank, dim=1)
|
|
fused_qkv = fused_qkv.reshape(3 * (q.shape[0] // self.tp_size),
|
|
q.shape[1])
|
|
return fused_qkv
|
|
|
|
|
|
def load_weights_from_hf_by_shard(model_dir: str, config: LLaMAConfig):
|
|
'''Weights-only quantization is the only supported quantization recipe here.'''
|
|
logger.info('Loading weights from HF LLaMA...')
|
|
quant_algo = config.quantization.quant_algo
|
|
use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16]
|
|
if quant_algo == QuantAlgo.W8A16:
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_algo == QuantAlgo.W4A16:
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
else:
|
|
plugin_weight_only_quant_type = None
|
|
|
|
weights = {}
|
|
tik = time.time()
|
|
dtype = getattr(torch, config.dtype)
|
|
|
|
mapping = config.mapping
|
|
moe_config = config.moe
|
|
assert not moe_config.has_moe(), "MoE does not support sharded load"
|
|
|
|
from transformers import AutoConfig
|
|
hf_config = AutoConfig.from_pretrained(model_dir)
|
|
|
|
quant_mode = config.quant_mode
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
else:
|
|
plugin_weight_only_quant_type = None
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
layers_range = mapping.pp_layers(config.num_hidden_layers)
|
|
|
|
qkv_weight_helper = QkvWeightHelper(config)
|
|
|
|
for model_file in iterate_shard_files(model_dir,
|
|
rank=mapping.tp_rank,
|
|
progress_bar=False):
|
|
logger.debug(f'Loading file {str(model_file)}...')
|
|
model_params = load_state_dict(model_file, dtype=dtype)
|
|
for name, param in model_params.items():
|
|
logger.debug(f'Converting weight {name}...')
|
|
layer_idx = retrieved_layer_index_from_name(name)
|
|
if layer_idx is None:
|
|
layer = None
|
|
else:
|
|
if layer_idx not in layers_range:
|
|
continue
|
|
tllm_prex = f'transformer.layers.{layer_idx}.'
|
|
|
|
if 'model.embed_tokens.weight' in name:
|
|
if hf_config.tie_word_embeddings:
|
|
# lm_head.weight has the same weights as embedding
|
|
if mapping.is_last_pp_rank():
|
|
|
|
if config.vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(
|
|
config.vocab_size, mapping.tp_size)
|
|
pad_width = vocab_size_padded - config.vocab_size
|
|
param = torch.from_numpy(
|
|
np.pad(param.detach().cpu().numpy(),
|
|
((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = split(
|
|
param, mapping.tp_size, mapping.tp_rank)
|
|
if config.use_parallel_embedding:
|
|
param = split(param, mapping.tp_size, mapping.tp_rank,
|
|
config.embedding_sharding_dim)
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = param
|
|
elif 'model.norm.weight' in name:
|
|
if mapping.is_last_pp_rank():
|
|
weights['transformer.ln_f.weight'] = param
|
|
elif 'lm_head.weight' in name:
|
|
if mapping.is_last_pp_rank():
|
|
if config.vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(
|
|
config.vocab_size, mapping.tp_size)
|
|
pad_width = vocab_size_padded - config.vocab_size
|
|
param = torch.from_numpy(
|
|
np.pad(param.detach().cpu().numpy(),
|
|
((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = split(param, mapping.tp_size,
|
|
mapping.tp_rank)
|
|
elif 'input_layernorm.weight' in name:
|
|
weights[tllm_prex + 'input_layernorm.weight'] = param
|
|
elif 'post_attention_layernorm.weight' in name:
|
|
weights[tllm_prex + 'post_layernorm.weight'] = param
|
|
elif qkv_weight_helper.is_qkv_weight(name):
|
|
qkv_weight_helper.add_weight(layer_idx, name, param)
|
|
if not qkv_weight_helper.is_qkv_prepared(layer_idx):
|
|
continue
|
|
split_v = qkv_weight_helper.split_qkv_weights(layer_idx)
|
|
if use_weight_only:
|
|
param = split_v.transpose()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
param, plugin_weight_only_quant_type)
|
|
weights[tllm_prex +
|
|
'attention.qkv.weight'] = processed_torch_weights
|
|
weights[
|
|
tllm_prex +
|
|
'attention.qkv.per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
weights[tllm_prex + 'attention.qkv.weight'] = split_v
|
|
elif 'self_attn.o_proj.weight' in name:
|
|
split_v = split(param, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
if use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
split_v.transpose(), plugin_weight_only_quant_type)
|
|
weights[tllm_prex +
|
|
'attention.dense.weight'] = processed_torch_weights
|
|
weights[
|
|
tllm_prex +
|
|
'attention.dense.per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
weights[tllm_prex + 'attention.dense.weight'] = split_v
|
|
elif 'mlp.up_proj.weight' in name:
|
|
split_v = split(param, mapping.tp_size, mapping.tp_rank, dim=0)
|
|
if use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
split_v.transpose(), plugin_weight_only_quant_type)
|
|
weights[tllm_prex +
|
|
'mlp.gate.weight'] = processed_torch_weights
|
|
weights[tllm_prex +
|
|
'mlp.gate.per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
weights[tllm_prex + 'mlp.gate.weight'] = split_v
|
|
elif 'mlp.down_proj.weight' in name:
|
|
split_v = split(param, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
if use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
split_v.transpose(), plugin_weight_only_quant_type)
|
|
weights[tllm_prex +
|
|
'mlp.proj.weight'] = processed_torch_weights
|
|
weights[tllm_prex +
|
|
'mlp.proj.per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
weights[tllm_prex + 'mlp.proj.weight'] = split_v
|
|
|
|
elif 'mlp.gate_proj.weight' in name:
|
|
split_v = split(param, mapping.tp_size, mapping.tp_rank, dim=0)
|
|
if use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
split_v.transpose(), plugin_weight_only_quant_type)
|
|
layer.mlp.fc.weight.value = processed_torch_weights
|
|
layer.mlp.fc.per_channel_scale.value = torch_weight_scales
|
|
weights[tllm_prex +
|
|
'mlp.fc.weight'] = processed_torch_weights
|
|
weights[tllm_prex +
|
|
'mlp.fc.per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
weights[tllm_prex + 'mlp.fc.weight'] = split_v
|
|
|
|
del model_params
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
def load_weights_from_hf_safetensors(model_dir: str, config: LLaMAConfig):
|
|
logger.info('Loading weights from Huggingface LLaMA safetensors...')
|
|
tik = time.time()
|
|
import json
|
|
import os
|
|
|
|
import safetensors
|
|
weights = {}
|
|
|
|
model_dir = model_dir if model_dir.endswith("/") else model_dir + "/"
|
|
safetensors_map = {}
|
|
try:
|
|
with open(model_dir + "model.safetensors.index.json", 'r') as fr:
|
|
sharding_map = json.load(fr)
|
|
for k, v in sharding_map['weight_map'].items():
|
|
safetensors_map[k] = int(v[6:11]) - 1
|
|
except FileNotFoundError:
|
|
pass
|
|
shard_files = []
|
|
for name in os.listdir(model_dir):
|
|
if name.endswith(".safetensors"):
|
|
shard_files.append(name)
|
|
shard_files.sort()
|
|
safetensors_ptrs = [
|
|
safetensors.safe_open(model_dir + shard_file,
|
|
framework="pt",
|
|
device="cpu") for shard_file in shard_files
|
|
]
|
|
|
|
mapping = config.mapping
|
|
num_hidden_layers = config.num_hidden_layers
|
|
vocab_size = config.vocab_size
|
|
pad_vocab = vocab_size % mapping.tp_size != 0
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size, mapping.tp_size)
|
|
dtype = config.dtype
|
|
|
|
moe_config = config.moe
|
|
|
|
model_prefix = "model."
|
|
key_list = [
|
|
"embed_tokens.weight", # vocab_embedding
|
|
"lm_head.weight", # lm_head
|
|
"norm.weight", # ln_f
|
|
"self_attn.", # attention.qkv
|
|
"_proj.weight", # qkv suffix
|
|
"self_attn.o_proj.weight", # attention.dense
|
|
"mlp.up_proj.weight", # mlp.gate
|
|
"mlp.down_proj.weight", # mlp.proj
|
|
"mlp.gate_proj.weight", # mlp.fc
|
|
"input_layernorm.weight", # input_layernorm
|
|
"post_attention_layernorm.weight", # post_layernorm
|
|
]
|
|
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
def load(key, tp_dim=-1, no_prefix=0):
|
|
if not no_prefix:
|
|
key = model_prefix + key
|
|
ptr_idx = safetensors_map[key] if key in safetensors_map else 0
|
|
|
|
if key not in safetensors_ptrs[ptr_idx].keys():
|
|
return None
|
|
|
|
if tp_dim == -1:
|
|
res = safetensors_ptrs[ptr_idx].get_tensor(key)
|
|
else:
|
|
tensor_slice = safetensors_ptrs[ptr_idx].get_slice(key)
|
|
tensor_shape = tensor_slice.get_shape()
|
|
if len(tensor_shape) == 1:
|
|
if tp_dim == 0:
|
|
slice_width = tensor_shape[0] // mapping.tp_size
|
|
res = tensor_slice[slice_width *
|
|
mapping.tp_rank:slice_width *
|
|
(mapping.tp_rank + 1)]
|
|
else:
|
|
res = tensor_slice[:]
|
|
else:
|
|
if tensor_shape[tp_dim] % mapping.tp_size != 0:
|
|
logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(mapping.tp_size))
|
|
slice_width = tensor_shape[tp_dim] // mapping.tp_size
|
|
if tp_dim == 0:
|
|
res = tensor_slice[slice_width *
|
|
mapping.tp_rank:slice_width *
|
|
(mapping.tp_rank + 1), :]
|
|
elif tp_dim == 1:
|
|
res = tensor_slice[:, slice_width *
|
|
mapping.tp_rank:slice_width *
|
|
(mapping.tp_rank + 1)]
|
|
else:
|
|
assert False, "Invalid TP dim"
|
|
return res.to(torch_dtype).contiguous(
|
|
) if "block_sparse_moe.gate" not in key else res.to(torch.float32)
|
|
|
|
def load_and_set(target, key, tp_dim=-1, no_prefix=0):
|
|
res = load(key, tp_dim, no_prefix)
|
|
weights[target] = res
|
|
if "weight" in key:
|
|
bias = load(key.replace("weight", "bias"), tp_dim, no_prefix)
|
|
if bias is not None:
|
|
weights[target.replace("weight", "bias")] = bias
|
|
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = load(
|
|
key_list[0], config.embedding_sharding_dim
|
|
if config.use_parallel_embedding else -1) # vocab_embedding
|
|
|
|
if mapping.is_last_pp_rank():
|
|
v = load(key_list[1], -1, 1) if pad_vocab else load(key_list[1], 0,
|
|
1) # lm_head
|
|
if pad_vocab:
|
|
v = torch.nn.functional.pad(
|
|
v, (0, 0, 0, vocab_size_padded - vocab_size), 'constant', 0)
|
|
v = split(v, mapping.tp_size, mapping.tp_rank)
|
|
weights['lm_head.weight'] = v
|
|
weights['transformer.ln_f.weight'] = load(key_list[2]) # ln_f
|
|
|
|
layers_range = mapping.pp_layers(num_hidden_layers)
|
|
for l in layers_range:
|
|
layer_idx = l - layers_range[0]
|
|
prefix = f'layers.{l}.'
|
|
tllm_prex = f'transformer.layers.{layer_idx}'
|
|
|
|
# Attention
|
|
qkv_list = []
|
|
for comp in ["q", "k", "v"]:
|
|
weight_part = load(prefix + key_list[3] + comp + key_list[4], 0)
|
|
qkv_list.append(weight_part)
|
|
bias_part = load(
|
|
(prefix + key_list[3] + comp + key_list[4]).replace(
|
|
"weight", "bias"), 0)
|
|
if bias_part is not None:
|
|
qkv_list.append(bias_part)
|
|
if len(qkv_list) == 3:
|
|
# No bias
|
|
weights[f'{tllm_prex}.attention.qkv.weight'] = torch.cat(
|
|
qkv_list, 0)
|
|
else:
|
|
weights[f'{tllm_prex}.attention.qkv.weight'] = torch.cat(
|
|
qkv_list[::2], 0)
|
|
weights[f'{tllm_prex}.attention.qkv.bias'] = torch.cat(
|
|
qkv_list[1::2], 0)
|
|
load_and_set(f'{tllm_prex}.attention.dense.weight',
|
|
prefix + key_list[5], 1) # attention.dense
|
|
|
|
# MLP
|
|
if not moe_config.has_moe():
|
|
load_and_set(f'{tllm_prex}.mlp.gate.weight', prefix + key_list[6],
|
|
0) # mlp.gate
|
|
load_and_set(f'{tllm_prex}.mlp.proj.weight', prefix + key_list[7],
|
|
1) # mlp.proj
|
|
load_and_set(f'{tllm_prex}.mlp.fc.weight', prefix + key_list[8],
|
|
0) # mlp.fc
|
|
|
|
else:
|
|
weights[f'{tllm_prex}.mlp.router.weight'] = load(
|
|
prefix + 'block_sparse_moe.gate.weight')
|
|
rank_experts = list(range(moe_config.num_experts))
|
|
if moe_config.tp_mode == moe_config.ParallelismMode.EXPERT_PARALLEL:
|
|
rank_experts = mapping.ep_experts(moe_config.num_experts)
|
|
|
|
expert_weight_list = []
|
|
for suffix in range(3):
|
|
tp_dim = -1
|
|
if moe_config.tp_mode == moe_config.ParallelismMode.TENSOR_PARALLEL:
|
|
tp_dim = 1 if suffix == 1 else 0
|
|
expert_weight_list.append(
|
|
torch.stack(
|
|
list(
|
|
load(
|
|
prefix +
|
|
f'block_sparse_moe.experts.{expert}.w{suffix + 1}.weight',
|
|
tp_dim=tp_dim) for expert in rank_experts)))
|
|
|
|
w1 = expert_weight_list[0]
|
|
w2 = expert_weight_list[1]
|
|
w3 = expert_weight_list[2]
|
|
|
|
weights[f'{tllm_prex}.mlp.fc.weight'] = \
|
|
torch.concat([w3, w1], dim=-2).contiguous()
|
|
weights[f'{tllm_prex}.mlp.proj.weight'] = w2.contiguous()
|
|
|
|
load_and_set(f'{tllm_prex}.input_layernorm.weight',
|
|
prefix + key_list[9]) # input_layernorm
|
|
load_and_set(f'{tllm_prex}.post_layernorm.weight',
|
|
prefix + key_list[10]) # post_layernorm
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
return weights
|
|
|
|
|
|
def load_weights_from_gptq(quant_ckpt_path: str, config: LLaMAConfig):
|
|
logger.info('Loading weights from groupwise GPTQ LLaMA safetensors...')
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
num_hidden_layers = config.num_hidden_layers
|
|
vocab_size = config.vocab_size
|
|
dtype = config.dtype
|
|
mapping = config.mapping
|
|
|
|
gptq_llama = safetensors.safe_open(quant_ckpt_path,
|
|
framework="pt",
|
|
device=0)
|
|
gptq_prefix = "model."
|
|
gptq_suffix_list = [".qweight", ".qzeros", ".scales"]
|
|
gptq_key_list = [
|
|
"embed_tokens.weight", # vocab_embedding
|
|
"lm_head.weight", # lm_head
|
|
"norm.weight", # ln_f
|
|
"self_attn.", # attention.qkv
|
|
"_proj", # qkv suffix
|
|
"self_attn.o_proj", # attention.dense
|
|
"mlp.up_proj", # mlp.gate
|
|
"mlp.down_proj", # mlp.proj
|
|
"mlp.gate_proj", # mlp.fc
|
|
"input_layernorm.weight", # input_layernorm
|
|
"post_attention_layernorm.weight", # post_layernorm
|
|
]
|
|
split_sym = "."
|
|
|
|
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
def load(key, no_prefix=0):
|
|
if no_prefix:
|
|
return gptq_llama.get_tensor(key)
|
|
else:
|
|
return gptq_llama.get_tensor(gptq_prefix + key)
|
|
|
|
def torch_split(v, dim):
|
|
if v.shape[dim] % mapping.tp_size != 0:
|
|
logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(mapping.tp_size))
|
|
assert False, "Invalid TP size"
|
|
return v.split(v.shape[dim] // mapping.tp_size,
|
|
dim=dim)[mapping.tp_rank]
|
|
|
|
def unpack_int32_into_int8(w_packed):
|
|
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
|
|
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
|
|
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
|
|
w_packed_int4x2.shape[1] * 2,
|
|
dtype=torch.int8)
|
|
w_unpacked[:, ::2] = w_packed_int4x2 % 16
|
|
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
|
|
return w_unpacked.contiguous()
|
|
|
|
def process_and_assign_weight(v: List[torch.Tensor],
|
|
tllm_prex: str,
|
|
tp_dim: int = -1):
|
|
if tp_dim == -1:
|
|
qweight_int32, qzeros_int32, scales_fp16 = [
|
|
item.cpu() for item in v
|
|
]
|
|
else:
|
|
qweight_int32, qzeros_int32, scales_fp16 = [
|
|
torch_split(item, tp_dim).cpu() for item in v
|
|
]
|
|
|
|
USE_UINT4_INPUT = 1 # Set to true if checkpoint store UINT4 weights
|
|
USE_GPTQ_FOR_LLAMA = 1 # GPTQ-for-LLaMA added 1 to zeros
|
|
|
|
qweight_unpacked_int8 = unpack_int32_into_int8(
|
|
qweight_int32.T).T.contiguous() - 8
|
|
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
|
|
torch.quint4x2,
|
|
torch.float16).view(torch.float16)
|
|
# zeros = zeros * scales
|
|
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
|
|
if not USE_UINT4_INPUT:
|
|
# Correcting UINT4 values back to INT4 order
|
|
mask_negative = qzeros_unpacked_int32[qzeros_unpacked_int32 < 0]
|
|
mask_positive = qzeros_unpacked_int32[qzeros_unpacked_int32 >= 0]
|
|
qzeros_unpacked_int32 = qzeros_unpacked_int32 + 16 * mask_negative - 16 * mask_positive
|
|
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * USE_UINT4_INPUT -
|
|
USE_GPTQ_FOR_LLAMA) * scales_fp16
|
|
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
|
|
|
|
results = {
|
|
f'{tllm_prex}.weight': qweight_interleaved,
|
|
f'{tllm_prex}.weights_scaling_factor': scales_fp16,
|
|
f'{tllm_prex}.zero': zeros_x_scales_fp16,
|
|
}
|
|
return results
|
|
|
|
# Load weights from GPTQ checkpoint into TRT-LLM module
|
|
# 1. vocab_embedding
|
|
v = load(gptq_key_list[0])
|
|
if mapping.is_first_pp_rank():
|
|
# tensorrt_llm_llama.vocab_embedding.weight.value = v.to(
|
|
# torch_dtype).cpu().numpy()
|
|
weights['transformer.vocab_embedding.weight'] = v.to(torch_dtype)
|
|
# 2. lm_head
|
|
v = load(gptq_key_list[1], "no_prefix")
|
|
if mapping.is_last_pp_rank():
|
|
# tensorrt_llm_llama.lm_head.weight.value = torch_split(
|
|
# v, 0).to(torch_dtype).cpu().numpy()
|
|
if vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
|
|
pad_width = vocab_size_padded - vocab_size
|
|
v = torch.from_numpy(
|
|
np.pad(v.detach().cpu().numpy(), ((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = torch_split(v, 0).to(torch_dtype)
|
|
|
|
# 3. ln_f
|
|
v = load(gptq_key_list[2])
|
|
if mapping.is_last_pp_rank():
|
|
# tensorrt_llm_llama.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
weights['transformer.ln_f.weight'] = v.to(torch_dtype)
|
|
# 4. Weights inside each layer
|
|
layers_range = mapping.pp_layers(num_hidden_layers)
|
|
for l in layers_range:
|
|
layer_idx = l - layers_range[0]
|
|
prefix = "layers" + split_sym + str(layer_idx) + split_sym
|
|
logger.info(f'Process weights in layer: {layer_idx}')
|
|
# layer = tensorrt_llm_llama.layers[layer_idx]
|
|
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
|
|
# 4.1 attention.qkv
|
|
qkv_weight_list = []
|
|
for suf in gptq_suffix_list:
|
|
qkv_list = []
|
|
for comp in ["q", "k", "v"]:
|
|
comp_part = load(prefix + gptq_key_list[3] + comp +
|
|
gptq_key_list[4] + suf)
|
|
comp_part = torch_split(comp_part, 1)
|
|
qkv_list.append(comp_part)
|
|
qkv_weight_list.append(torch.cat(qkv_list, dim=1))
|
|
|
|
# process_and_assign_weight(layer.attention.qkv, qkv_weight_list)
|
|
weights.update(
|
|
process_and_assign_weight(qkv_weight_list,
|
|
f'{tllm_prex}.attention.qkv'))
|
|
# 4.2 attention.dense
|
|
v = [load(prefix + gptq_key_list[5] + suf) for suf in gptq_suffix_list]
|
|
# process_and_assign_weight(layer.attention.dense, v, 0)
|
|
weights.update(
|
|
process_and_assign_weight(v,
|
|
f'{tllm_prex}.attention.dense',
|
|
tp_dim=0))
|
|
# 4.3 mlp.gate
|
|
v = [load(prefix + gptq_key_list[6] + suf) for suf in gptq_suffix_list]
|
|
# process_and_assign_weight(layer.mlp.gate, v, 1)
|
|
weights.update(
|
|
process_and_assign_weight(v, f'{tllm_prex}.mlp.gate', tp_dim=1))
|
|
# 4.4 mlp.proj
|
|
v = [load(prefix + gptq_key_list[7] + suf) for suf in gptq_suffix_list]
|
|
# process_and_assign_weight(layer.mlp.proj, v, 0)
|
|
weights.update(
|
|
process_and_assign_weight(v, f'{tllm_prex}.mlp.proj', tp_dim=0))
|
|
# 4.5 mlp.fc
|
|
v = [load(prefix + gptq_key_list[8] + suf) for suf in gptq_suffix_list]
|
|
# process_and_assign_weight(layer.mlp.fc, v, 1)
|
|
weights.update(
|
|
process_and_assign_weight(v, f'{tllm_prex}.mlp.fc', tp_dim=1))
|
|
# 4.6 input_layernorm
|
|
v = load(prefix + gptq_key_list[9])
|
|
# layer.input_layernorm.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
weights[f'{tllm_prex}.input_layernorm.weight'] = v.to(torch_dtype)
|
|
|
|
# 4.7 post_layernorm
|
|
v = load(prefix + gptq_key_list[10])
|
|
# layer.post_layernorm.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
weights[f'{tllm_prex}.post_layernorm.weight'] = v.to(torch_dtype)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
return weights
|
|
|
|
|
|
def load_weights_from_meta_ckpt(meta_ckpt_dir: str, config: LLaMAConfig):
|
|
torch_dtype = str_dtype_to_torch(config.dtype)
|
|
mapping = config.mapping
|
|
weights = {}
|
|
|
|
def gather_ckpts(ckpts):
|
|
gathered = {}
|
|
for k in ckpts[0]:
|
|
d = 0
|
|
if any([n in k for n in ["wo", "w2", "tok"]]):
|
|
d = 1
|
|
if "norm" in k or "rope" in k: # no TP
|
|
gathered[k] = ckpts[0][k].clone()
|
|
else:
|
|
gathered[k] = torch.cat([pt[k] for pt in ckpts], dim=d).clone()
|
|
return gathered
|
|
|
|
def split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank):
|
|
split_ckpt = {}
|
|
for k, v in ckpt.items():
|
|
d = 0
|
|
if any(n in k for n in
|
|
["wo", "feed_forward.w2", "tok", "feed_forward.gate"]):
|
|
d = 1
|
|
if "norm" in k or "rope" in k: # no TP
|
|
split_ckpt[k] = v.clone()
|
|
elif config.num_key_value_heads < mapping.tp_size and any(
|
|
n in k for n in ["wk", "wv"]):
|
|
assert mapping.tp_size % config.num_key_value_heads == 0
|
|
# special case: we need to duplicate KV head
|
|
tmp = dup_kv_weight(v, config.num_key_value_heads,
|
|
mapping.tp_size)
|
|
split_ckpt[k] = torch.split(tmp,
|
|
tmp.shape[d] // ranks_per_ckpt,
|
|
dim=d)[ckpt_rank].clone()
|
|
else:
|
|
split_ckpt[k] = torch.split(v,
|
|
v.shape[d] // ranks_per_ckpt,
|
|
dim=d)[ckpt_rank].clone()
|
|
return split_ckpt
|
|
|
|
def get_current_weights(num_ckpts):
|
|
if num_ckpts > mapping.tp_size:
|
|
# combine ckpts
|
|
assert (num_ckpts % mapping.tp_size) == 0
|
|
nf = num_ckpts // mapping.tp_size
|
|
fs = nf * mapping.tp_rank
|
|
file_ids = list(range(fs, fs + nf))
|
|
ckpts = []
|
|
for f in file_ids:
|
|
ckpt = torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{f:02d}.pth"),
|
|
map_location="cpu")
|
|
ckpts.append(ckpt)
|
|
return gather_ckpts(ckpts)
|
|
elif num_ckpts < mapping.tp_size:
|
|
# split ckpt
|
|
assert (mapping.tp_size % num_ckpts) == 0
|
|
ranks_per_ckpt = mapping.tp_size // num_ckpts
|
|
ckpt_fid = mapping.tp_rank // ranks_per_ckpt
|
|
ckpt_rank = mapping.tp_rank % ranks_per_ckpt
|
|
nH_per_ckpt = config.num_attention_heads // num_ckpts
|
|
assert (nH_per_ckpt % ranks_per_ckpt) == 0
|
|
ckpt = torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{ckpt_fid:02d}.pth"),
|
|
map_location="cpu")
|
|
return split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank)
|
|
|
|
# num_ckpts == tensor_parallel, 1:1 mapping from files to TP
|
|
return torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{mapping.tp_rank:02d}.pth"),
|
|
map_location="cpu")
|
|
|
|
def permute(w, nH, d, dH):
|
|
# due to MQA's wk, nH*dH != d could be true
|
|
return w.view(nH, dH // 2, 2, d).transpose(1, 2).reshape(nH * dH, d)
|
|
|
|
def extract_layer_idx(name):
|
|
ss = name.split('.')
|
|
for s in ss:
|
|
if s.isdigit():
|
|
return s
|
|
return None
|
|
|
|
if not hasattr(load_weights_from_meta_ckpt, "saved_embed"):
|
|
load_weights_from_meta_ckpt.saved_embed = None
|
|
|
|
def combine_embeddings(embeds, num_ckpts):
|
|
if len(embeds) == 1:
|
|
return embeds[0]
|
|
assert [
|
|
embeds[i].shape == embeds[i + 1].shape
|
|
for i in range(len(embeds) - 1)
|
|
]
|
|
if embeds[0].shape[0] == config.vocab_size // num_ckpts:
|
|
merge_dim = 0
|
|
elif embeds[0].shape[1] == config.hidden_size // num_ckpts:
|
|
merge_dim = 1
|
|
else:
|
|
logger.error("Unable to infer embedding split dimension")
|
|
assert False, "Unable to infer embedding split dimension"
|
|
return torch.cat(embeds, dim=merge_dim)
|
|
|
|
def gather_embedding(cur_embed, name: str, num_ckpts):
|
|
if mapping.tp_size == 1:
|
|
# even if num_ckpts > 1, get_current_weights will already have it gathered
|
|
return cur_embed
|
|
if load_weights_from_meta_ckpt.saved_embed is None:
|
|
embeds = [None] * num_ckpts
|
|
for i in range(num_ckpts):
|
|
ckpt = torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{i:02d}.pth"),
|
|
map_location="cpu")
|
|
embeds[i] = ckpt[name]
|
|
embed = combine_embeddings(embeds, num_ckpts).to(torch_dtype)
|
|
load_weights_from_meta_ckpt.saved_embed = embed
|
|
|
|
return load_weights_from_meta_ckpt.saved_embed
|
|
|
|
logger.info('Loading weights from Meta LLaMA checkpoints ...')
|
|
tik = time.time()
|
|
|
|
num_kv_heads = config.num_key_value_heads
|
|
mha_mode = (num_kv_heads == config.num_attention_heads)
|
|
|
|
ckpts = list(Path(meta_ckpt_dir).glob("consolidated.*.pth"))
|
|
num_ckpts = len(ckpts)
|
|
# llama/llama2 doesn't have MQA. So, simplifying loader logic by not worrying about it.
|
|
assert num_kv_heads > 1 or num_kv_heads >= num_ckpts, \
|
|
f"We don't know how the {num_kv_heads} KV heads are distributed among {num_ckpts} checkpoints."
|
|
|
|
head_size = config.hidden_size // config.num_attention_heads
|
|
ckpt = get_current_weights(num_ckpts)
|
|
layers_range = mapping.pp_layers(config.num_hidden_layers)
|
|
|
|
for l in layers_range:
|
|
prefix = f'layers.{l}.attention.'
|
|
q_weight = permute(ckpt[prefix + 'wq.weight'].clone(),
|
|
nH=(config.num_attention_heads // mapping.tp_size),
|
|
d=config.hidden_size,
|
|
dH=head_size)
|
|
if num_kv_heads < mapping.tp_size and num_ckpts >= mapping.tp_size:
|
|
assert mapping.tp_size % num_kv_heads == 0
|
|
assert False, "Not supported yet"
|
|
k_weight = permute(ckpt[prefix + 'wk.weight'].clone(),
|
|
nH=((num_kv_heads + mapping.tp_size - 1) //
|
|
mapping.tp_size),
|
|
d=config.hidden_size,
|
|
dH=head_size)
|
|
v_weight = ckpt[prefix + 'wv.weight'].clone()
|
|
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
ckpt[prefix + 'qkv.weight'] = qkv_weight
|
|
|
|
for k, v in ckpt.items():
|
|
dtype = torch_dtype if 'feed_forward.gate' not in k else torch.float32
|
|
|
|
v = v.to(dtype)
|
|
if "tok_embeddings" in k:
|
|
if not config.use_parallel_embedding:
|
|
v = gather_embedding(v, k, num_ckpts)
|
|
elif config.embedding_sharding_dim == 0:
|
|
# this needs a gather and then resplit along different dims
|
|
v = gather_embedding(v, k, num_ckpts)
|
|
v = split(v, mapping.tp_size, mapping.tp_rank, 0)
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = v
|
|
elif "output" in k:
|
|
if mapping.is_last_pp_rank():
|
|
if config.vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
mapping.tp_size)
|
|
pad_width = vocab_size_padded - config.vocab_size
|
|
v = torch.from_numpy(
|
|
np.pad(v.detach().cpu().numpy(),
|
|
((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = v
|
|
elif k == "norm.weight":
|
|
if mapping.is_last_pp_rank():
|
|
weights['transformer.ln_f.weight'] = v
|
|
else:
|
|
# layer specific weights
|
|
layer_idx = extract_layer_idx(k)
|
|
|
|
if layer_idx is None or int(layer_idx) not in layers_range:
|
|
continue
|
|
idx = int(layer_idx) - layers_range[0]
|
|
tllm_prex = f'transformer.layers.{idx}.'
|
|
|
|
if 'attention_norm.weight' in k:
|
|
weights[tllm_prex + 'input_layernorm.weight'] = v
|
|
elif 'ffn_norm.weight' in k:
|
|
weights[tllm_prex + 'post_layernorm.weight'] = v
|
|
elif 'feed_forward.w3.weight' in k:
|
|
weights[tllm_prex + 'mlp.gate.weight'] = v
|
|
elif 'feed_forward.w2.weight' in k:
|
|
weights[tllm_prex + 'mlp.proj.weight'] = v
|
|
elif 'feed_forward.w1.weight' in k:
|
|
weights[tllm_prex + 'mlp.fc.weight'] = v
|
|
elif 'attention.wo.weight' in k:
|
|
weights[tllm_prex + 'attention.dense.weight'] = v
|
|
elif 'attention.qkv.weight' in k:
|
|
weights[tllm_prex + 'attention.qkv.weight'] = v
|
|
elif 'feed_forward.gate' in k:
|
|
weights[tllm_prex + 'mlp.router.weight'] = v
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Weights loaded. Total time: {t}')
|
|
return weights
|