TensorRT-LLMs/examples/trtllm-eval
Enwei Zhu 74df12bbaa
[TRTLLM-4480][doc] Documentation for new accuracy test suite and trtllm-eval (#3946)
* fix formula

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* update doc

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* 1st version

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* polish

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

---------

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
2025-05-08 19:35:23 +08:00
..
README.md [TRTLLM-4480][doc] Documentation for new accuracy test suite and trtllm-eval (#3946) 2025-05-08 19:35:23 +08:00
requirements.txt [TRTLLM-4480][doc] Documentation for new accuracy test suite and trtllm-eval (#3946) 2025-05-08 19:35:23 +08:00

Accuracy Evaluation Tool trtllm-eval

We provide a CLI tool trtllm-eval for evaluating model accuracy. It shares the core evaluation logics with the accuracy test suite of TensorRT-LLM.

trtllm-eval is built on the offline API -- LLM API. It provides developers a unified entrypoint for accuracy evaluation. Compared with the online API trtllm-serve, offline API provides clearer error messages and simplifies the debugging workflow.

trtllm-eval follows the CLI interface of trtllm-serve.

pip install -r requirements.txt

# Evaluate Llama-3.1-8B-Instruct on MMLU
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar && tar -xf data.tar
trtllm-eval --model meta-llama/Llama-3.1-8B-Instruct mmlu --dataset_path data

# Evaluate Llama-3.1-8B-Instruct on GSM8K
trtllm-eval --model meta-llama/Llama-3.1-8B-Instruct gsm8k

# Evaluate Llama-3.3-70B-Instruct on GPQA Diamond
trtllm-eval --model meta-llama/Llama-3.3-70B-Instruct gpqa_diamond

The --model argument accepts either a Hugging Face model ID or a local checkpoint path. By default, trtllm-eval runs the model with the PyTorch backend; pass --backend tensorrt to switch to the TensorRT backend. Alternatively, the --model argument also accepts a local path to pre-built TensorRT engines; in that case, please pass the Hugging Face tokenizer path to the --tokenizer argument.

See more details by trtllm-eval --help.