mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-25 13:12:45 +08:00
* fp8 kv + bf16 ctx MLA + fp8 gen MLA
Use BF16 for context MLA.
mFP8GenerationMLA and mFP8ContextFMHA shouldn't be enabled together.
Allow mSM==90 for mFP8GenerationMLA==true.
For FMHA, dataTypeKv should be FP8.
For FP8 MLA generation, the output is still in BF16.
Refine debug info for FMHA kernel metadata.
Use inputType, outputType, SM together to hash kernel list.
Add FP8 MLA generation FMHA kernel.
Special WAR of NUM_COMPUTE_GROUPS for MLA generation kernel.
Separate the implementation of fused_multihead_attention_v2.h to CPP and print some debug info if checkIfKernelExist fails.
Refine debug info in fused_multihead_attention_v2.cpp
Correct FP8 MLA metadata.
New kernel provided by Yuxin, which outputs BF16.
smem size is not set correctly, which will lead to illegal mem access.
Yuxin fixed the error in FMHA MLA kernel: previously the BF16 isn't correctly written: some parts are repeatedly written, while some others are untouched.
There are two bmm1 scales that should be set correctly.
New kernel generated by Yuxin.
Modificatiosn to common/attentionOp for FP8 MLA on Hopper using FMHA.
Not necessary. If mFP8GenerationMLA, is_fp8_out is false, so mFP8ContextFMHA is false.
Skip a check in fmhaDispatcher.
Modifications in fmhaRunner:
- Debug dump.
- if (!isFP8GenerationMLA) skips a lot of flag setting.
- TMA descriptor modification for qo (by Yuxin).
Cleanup debug output.
Clean up o tma descriptor modifications.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Resolve conflicts.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Apply the patch of FP8 FlashMLA and resolve conflicts.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Fix compilation error.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Fix compile error.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* pick blackwell support
Signed-off-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com>
* Add copyright notice to fused_multihead_attention_v2.cpp.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Add license.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Add missing license.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Exclude building flashMLA kernels under sm90.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Revert "Exclude building flashMLA kernels under sm90."
This reverts commit f0c859d459.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
* Use macro to skip compiling FlashMLA for non sm90 targets.
Signed-off-by: Bo Li <bobboli0202@gmail.com>
---------
Signed-off-by: Bo Li <bobboli0202@gmail.com>
Signed-off-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com>
Co-authored-by: Dylan Chen <ziqingc@nvidia.com>
Co-authored-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com>
Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com>
649 lines
25 KiB
Python
649 lines
25 KiB
Python
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from ..attention_backend import (AttentionInputType, AttentionMetadata,
|
|
TrtllmAttention)
|
|
from ..attention_backend.interface import (PositionalEmbeddingParams,
|
|
PredefinedAttentionMask)
|
|
from ..attention_backend.utils import create_attention
|
|
from ..distributed import AllReduceParams, ParallelConfig, TensorParallelMode
|
|
from ..model_config import ModelConfig
|
|
from .linear import Linear, WeightMode, WeightsLoadingConfig
|
|
from .rms_norm import RMSNorm
|
|
from .rotary_embedding import RotaryEmbedding
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
hidden_size: int,
|
|
num_attention_heads: int,
|
|
num_key_value_heads: int,
|
|
max_position_embeddings: int,
|
|
bias: bool,
|
|
pos_embd_params: Optional[PositionalEmbeddingParams] = None,
|
|
rotary_emb: Optional[RotaryEmbedding] = None,
|
|
layer_idx: Optional[int] = None,
|
|
dtype: torch.dtype = None,
|
|
dense_bias: Optional[bool] = None,
|
|
config: Optional[ModelConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.pos_embd_params = pos_embd_params
|
|
self.dense_bias = dense_bias
|
|
if dense_bias is None:
|
|
self.dense_bias = bias
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads}).")
|
|
|
|
# tensor parallel
|
|
config = config or ModelConfig()
|
|
tp_size = config.mapping.tp_size
|
|
tp_rank = config.mapping.tp_rank
|
|
gpus_per_node = config.mapping.gpus_per_node
|
|
if config.mapping.enable_attention_dp:
|
|
tp_size = 1
|
|
tp_rank = 0
|
|
|
|
assert self.num_heads % tp_size == 0
|
|
self.num_heads = self.num_heads // tp_size
|
|
self.num_key_value_heads = (self.num_key_value_heads + tp_size -
|
|
1) // tp_size
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_key_value_heads * self.head_dim
|
|
|
|
self.qkv_proj = Linear(
|
|
self.hidden_size,
|
|
tp_size * self.q_size + 2 * tp_size * self.kv_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
parallel_config=ParallelConfig(
|
|
tensor_parallel_size=tp_size,
|
|
tensor_parallel_rank=tp_rank,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
gpus_per_node=gpus_per_node,
|
|
pipeline_parallel_size=config.mapping.pp_size,
|
|
parallel_rank=config.mapping.rank),
|
|
weights_loading_config=WeightsLoadingConfig(
|
|
weight_mode=WeightMode.FUSED_QKV_LINEAR),
|
|
quant_config=config.get_quant_config(),
|
|
skip_create_weights=config.skip_create_weights,
|
|
)
|
|
self.o_proj = Linear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=self.dense_bias,
|
|
dtype=dtype,
|
|
parallel_config=ParallelConfig(
|
|
tensor_parallel_size=tp_size,
|
|
tensor_parallel_rank=tp_rank,
|
|
tensor_parallel_mode=TensorParallelMode.ROW,
|
|
gpus_per_node=gpus_per_node,
|
|
pipeline_parallel_size=config.mapping.pp_size,
|
|
parallel_rank=config.mapping.rank),
|
|
quant_config=config.get_quant_config(),
|
|
skip_create_weights=config.skip_create_weights,
|
|
)
|
|
self.quant_config = config.get_quant_config()
|
|
self.attn_backend = config.attn_backend
|
|
self.pos_embd_params = pos_embd_params
|
|
self.rotary_emb = rotary_emb
|
|
|
|
if not config.skip_create_weights:
|
|
self.create_weights()
|
|
|
|
def create_weights(self):
|
|
self.attn = create_attention(
|
|
self.attn_backend,
|
|
self.layer_idx,
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.num_key_value_heads,
|
|
pos_embd_params=self.pos_embd_params,
|
|
quant_config=self.quant_config,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: Optional[torch.LongTensor],
|
|
hidden_states: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
attention_mask: PredefinedAttentionMask = PredefinedAttentionMask.
|
|
CAUSAL,
|
|
mrope_config: Optional[dict] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
qkv = self.qkv_proj(hidden_states)
|
|
is_fused_qkv = False
|
|
if isinstance(self.attn, TrtllmAttention):
|
|
is_fused_qkv = True
|
|
|
|
if is_fused_qkv:
|
|
if self.pos_embd_params is None and position_ids is not None:
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size],
|
|
dim=-1)
|
|
q, k = self.rotary_emb(
|
|
position_ids,
|
|
[q.contiguous(), k.contiguous()], attn_metadata)
|
|
qkv = torch.concat(
|
|
[q.contiguous(),
|
|
k.contiguous(),
|
|
v.contiguous()], dim=-1)
|
|
|
|
out_scale = None
|
|
if self.o_proj.has_fp8_qdq or self.o_proj.has_nv_fp4 or self.o_proj.has_fp8_block_scales:
|
|
out_scale = self.o_proj.inv_input_scale
|
|
attn_output = self.attn.forward(qkv,
|
|
None,
|
|
None,
|
|
attn_metadata,
|
|
out_scale=out_scale,
|
|
attention_mask=attention_mask,
|
|
mrope_config=mrope_config)
|
|
else:
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size],
|
|
dim=-1)
|
|
|
|
if self.pos_embd_params is None and position_ids is not None:
|
|
q, k = self.rotary_emb(
|
|
position_ids,
|
|
[q.contiguous(), k.contiguous()], attn_metadata)
|
|
|
|
attn_output = self.attn.forward(q.contiguous(),
|
|
k.contiguous(),
|
|
v.contiguous(),
|
|
attn_metadata,
|
|
attention_mask=attention_mask,
|
|
mrope_config=mrope_config)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output
|
|
|
|
|
|
class MLA(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
hidden_size: int,
|
|
num_attention_heads: int,
|
|
num_key_value_heads: int,
|
|
qk_nope_head_dim: int,
|
|
qk_rope_head_dim: int,
|
|
v_head_dim: int,
|
|
q_lora_rank: int,
|
|
kv_lora_rank: int,
|
|
predicted_tokens_per_seq: int,
|
|
max_position_embeddings: int,
|
|
bias: bool,
|
|
aux_stream: Optional[torch.cuda.Stream] = None,
|
|
pos_embd_params: Optional[PositionalEmbeddingParams] = None,
|
|
rotary_emb: Optional[RotaryEmbedding] = None,
|
|
layer_idx: Optional[int] = None,
|
|
dtype: torch.dtype = None,
|
|
dense_bias: Optional[bool] = None,
|
|
config: Optional[ModelConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.qk_nope_head_dim = qk_nope_head_dim
|
|
self.qk_rope_head_dim = qk_rope_head_dim
|
|
self.v_head_dim = v_head_dim
|
|
self.q_lora_rank = q_lora_rank
|
|
self.kv_lora_rank = kv_lora_rank
|
|
self.predicted_tokens_per_seq = predicted_tokens_per_seq
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.pos_embd_params = pos_embd_params
|
|
self.dense_bias = dense_bias
|
|
if dense_bias is None:
|
|
self.dense_bias = bias
|
|
|
|
if self.q_lora_rank is None:
|
|
self.q_lora_rank = hidden_size
|
|
self.is_lite = True
|
|
else:
|
|
self.is_lite = False
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads}).")
|
|
|
|
# tensor parallel
|
|
config = config or ModelConfig()
|
|
tp_size = config.mapping.tp_size
|
|
tp_rank = config.mapping.tp_rank
|
|
gpus_per_node = config.mapping.gpus_per_node
|
|
if config.mapping.enable_attention_dp:
|
|
tp_size = 1
|
|
tp_rank = 0
|
|
|
|
row_parallel_config = ParallelConfig(
|
|
tensor_parallel_rank=tp_rank,
|
|
tensor_parallel_size=tp_size,
|
|
tensor_parallel_mode=TensorParallelMode.ROW,
|
|
gpus_per_node=gpus_per_node,
|
|
pipeline_parallel_size=config.mapping.pp_size,
|
|
parallel_rank=config.mapping.rank,
|
|
)
|
|
col_parallel_config = ParallelConfig(
|
|
tensor_parallel_rank=tp_rank,
|
|
tensor_parallel_size=tp_size,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
gpus_per_node=gpus_per_node,
|
|
pipeline_parallel_size=config.mapping.pp_size,
|
|
parallel_rank=config.mapping.rank,
|
|
)
|
|
|
|
assert self.num_heads % tp_size == 0
|
|
self.num_heads = self.num_heads // tp_size
|
|
self.num_key_value_heads = (self.num_key_value_heads + tp_size -
|
|
1) // tp_size
|
|
|
|
rms_norm_eps = config.pretrained_config.rms_norm_eps
|
|
quant_config = config.get_quant_config()
|
|
quant_mode = quant_config.quant_mode
|
|
|
|
if not self.is_lite:
|
|
self.fused_a = Linear(
|
|
hidden_size,
|
|
self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
quant_config=quant_config,
|
|
skip_create_weights=config.skip_create_weights,
|
|
use_custom_cublas_mm=True)
|
|
|
|
self.q_a_layernorm = RMSNorm(hidden_size=self.q_lora_rank,
|
|
eps=rms_norm_eps,
|
|
dtype=dtype)
|
|
|
|
self.q_b_proj = Linear(
|
|
self.q_lora_rank,
|
|
tp_size * self.num_heads *
|
|
(self.qk_nope_head_dim + self.qk_rope_head_dim),
|
|
bias=bias,
|
|
dtype=dtype,
|
|
parallel_config=col_parallel_config,
|
|
quant_config=quant_config,
|
|
skip_create_weights=config.skip_create_weights)
|
|
else:
|
|
self.fused_a = Linear(
|
|
hidden_size,
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
quant_config=quant_config,
|
|
skip_create_weights=config.skip_create_weights,
|
|
use_custom_cublas_mm=True)
|
|
|
|
self.q_proj = Linear(
|
|
self.q_lora_rank,
|
|
tp_size * self.num_heads *
|
|
(self.qk_nope_head_dim + self.qk_rope_head_dim),
|
|
bias=bias,
|
|
dtype=dtype,
|
|
parallel_config=col_parallel_config,
|
|
quant_config=quant_config,
|
|
skip_create_weights=config.skip_create_weights)
|
|
self.q_b_proj = self.q_proj
|
|
|
|
self.kv_a_layernorm = RMSNorm(hidden_size=kv_lora_rank,
|
|
dtype=dtype,
|
|
eps=rms_norm_eps)
|
|
|
|
if quant_mode.has_fp8_block_scales():
|
|
mla_weight_dtype = torch.float8_e4m3fn
|
|
else:
|
|
mla_weight_dtype = dtype
|
|
|
|
self.kv_b_proj = Linear(self.kv_lora_rank,
|
|
tp_size * self.num_heads *
|
|
(self.qk_nope_head_dim + self.v_head_dim),
|
|
bias=bias,
|
|
dtype=dtype,
|
|
parallel_config=col_parallel_config,
|
|
quant_config=quant_config,
|
|
skip_create_weights=config.skip_create_weights)
|
|
# This parameter will view into self.kv_b_proj.weight after loading weights.
|
|
# For dummy weight initialization, this parameter is initialized with empty tensor.
|
|
self.v_b_proj = nn.Parameter(
|
|
torch.empty(
|
|
(self.num_heads, self.v_head_dim, self.kv_lora_rank),
|
|
dtype=dtype,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
|
|
self.k_b_proj_trans = nn.Parameter(
|
|
torch.empty(
|
|
(self.num_heads, self.kv_lora_rank, self.qk_nope_head_dim),
|
|
dtype=mla_weight_dtype,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
|
|
if quant_mode.has_fp8_block_scales():
|
|
self.k_b_proj_trans_scale = nn.Parameter(
|
|
torch.empty(
|
|
(
|
|
self.num_heads,
|
|
self.kv_lora_rank // 128,
|
|
self.qk_nope_head_dim // 128,
|
|
),
|
|
dtype=torch.float32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
# This parameter will view into self.kv_b_proj.weight_scale after loading weights.
|
|
# For dummy weight initialization, this parameter is initialized with empty tensor.
|
|
self.v_b_proj_scale = nn.Parameter(
|
|
torch.empty(
|
|
(
|
|
self.num_heads,
|
|
self.v_head_dim // 128,
|
|
self.kv_lora_rank // 128,
|
|
),
|
|
dtype=torch.float32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
else:
|
|
self.k_b_proj_trans_scale = None
|
|
self.v_b_proj_scale = None
|
|
|
|
self.o_proj = Linear(
|
|
self.num_key_value_heads * self.v_head_dim * tp_size,
|
|
self.hidden_size,
|
|
bias=self.dense_bias,
|
|
dtype=dtype,
|
|
parallel_config=row_parallel_config,
|
|
quant_config=quant_config,
|
|
skip_create_weights=config.skip_create_weights,
|
|
)
|
|
|
|
self.mha = create_attention(
|
|
config.attn_backend,
|
|
self.layer_idx,
|
|
self.num_heads,
|
|
self.qk_nope_head_dim + self.qk_rope_head_dim,
|
|
self.num_key_value_heads,
|
|
pos_embd_params=pos_embd_params,
|
|
quant_config=quant_config,
|
|
is_mla_enable=True,
|
|
q_lora_rank=self.q_lora_rank,
|
|
kv_lora_rank=self.kv_lora_rank,
|
|
qk_nope_head_dim=self.qk_nope_head_dim,
|
|
qk_rope_head_dim=self.qk_rope_head_dim,
|
|
v_head_dim=self.v_head_dim,
|
|
predicted_tokens_per_seq=self.predicted_tokens_per_seq,
|
|
)
|
|
|
|
self.mqa = create_attention(
|
|
config.attn_backend,
|
|
self.layer_idx,
|
|
self.num_heads,
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
1, # num_kv_heads
|
|
pos_embd_params=pos_embd_params,
|
|
quant_config=quant_config,
|
|
is_mla_enable=True,
|
|
q_lora_rank=self.q_lora_rank,
|
|
kv_lora_rank=self.kv_lora_rank,
|
|
qk_nope_head_dim=self.qk_nope_head_dim,
|
|
qk_rope_head_dim=self.qk_rope_head_dim,
|
|
v_head_dim=self.kv_lora_rank,
|
|
predicted_tokens_per_seq=self.predicted_tokens_per_seq,
|
|
)
|
|
self.rotary_emb = rotary_emb
|
|
self.aux_stream = aux_stream
|
|
self.ln_events = [torch.cuda.Event(), torch.cuda.Event()]
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: Optional[torch.LongTensor],
|
|
hidden_states: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
all_reduce_params: Optional[AllReduceParams] = None,
|
|
) -> torch.Tensor:
|
|
if self.is_lite:
|
|
compressed_kv, k_pe = self.fused_a(hidden_states).split(
|
|
[self.kv_lora_rank, self.qk_rope_head_dim], -1)
|
|
compressed_kv = self.kv_a_layernorm(compressed_kv)
|
|
compressed_q = hidden_states
|
|
else:
|
|
compressed_q, compressed_kv, k_pe = self.fused_a(
|
|
hidden_states).split([
|
|
self.q_lora_rank, self.kv_lora_rank, self.qk_rope_head_dim
|
|
], -1)
|
|
do_multi_stream = torch.cuda.is_current_stream_capturing(
|
|
) and self.aux_stream is not None
|
|
if do_multi_stream:
|
|
self.ln_events[0].record()
|
|
compressed_kv = self.kv_a_layernorm(compressed_kv)
|
|
with torch.cuda.stream(self.aux_stream):
|
|
self.ln_events[0].wait()
|
|
compressed_q = self.q_a_layernorm(compressed_q)
|
|
self.ln_events[1].record()
|
|
self.ln_events[1].wait()
|
|
else:
|
|
compressed_q = self.q_a_layernorm(compressed_q)
|
|
compressed_kv = self.kv_a_layernorm(compressed_kv)
|
|
|
|
q = self.q_b_proj(compressed_q)
|
|
|
|
# split q, k, v into context and gen batches
|
|
num_contexts = attn_metadata.num_contexts
|
|
num_generations = attn_metadata.num_generations
|
|
num_ctx_tokens = attn_metadata.num_ctx_tokens
|
|
num_tokens = attn_metadata.num_tokens
|
|
|
|
assert q.shape[
|
|
0] == num_tokens, f"Expect q.shape[0] to be {num_tokens}, but got {q.shape[0]}"
|
|
|
|
if num_contexts > 0:
|
|
q_ctx = q[:num_ctx_tokens, ...]
|
|
compressed_kv_ctx = compressed_kv[:num_ctx_tokens, ...]
|
|
k_pe_ctx = k_pe[:num_ctx_tokens, ...]
|
|
|
|
attn_output_context = self.forward_context(q_ctx, compressed_kv_ctx,
|
|
k_pe_ctx, attn_metadata)
|
|
else:
|
|
attn_output_context = None
|
|
|
|
if num_generations > 0:
|
|
q_gen = q[num_ctx_tokens:, ...]
|
|
compressed_kv_gen = compressed_kv[num_ctx_tokens:, ...]
|
|
k_pe_gen = k_pe[num_ctx_tokens:, ...]
|
|
|
|
attn_output_gen = self.forward_generation(q_gen, compressed_kv_gen,
|
|
k_pe_gen, attn_metadata)
|
|
else:
|
|
attn_output_gen = None
|
|
|
|
# merge context and gen batches
|
|
if attn_output_context is not None and attn_output_gen is not None:
|
|
assert (
|
|
len(attn_output_context.shape) == 2
|
|
), f"attn_output_context must be rank 2, not {len(attn_output_context.shape)}"
|
|
assert (
|
|
len(attn_output_gen.shape) == 2
|
|
), f"attn_output_gen must be rank 2, not {len(attn_output_gen.shape)}"
|
|
attn_output = torch.cat([attn_output_context, attn_output_gen],
|
|
dim=0)
|
|
elif attn_output_gen is None:
|
|
attn_output = attn_output_context
|
|
else:
|
|
attn_output = attn_output_gen
|
|
|
|
attn_output = self.o_proj(attn_output,
|
|
all_reduce_params=all_reduce_params)
|
|
return attn_output
|
|
|
|
def forward_context(
|
|
self,
|
|
q: torch.Tensor,
|
|
compressed_kv: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
latent_cache = torch.cat([compressed_kv, k_pe], dim=-1)
|
|
|
|
kv = self.kv_b_proj(compressed_kv)
|
|
k_nope, v = kv.split(
|
|
[
|
|
self.num_heads * self.qk_nope_head_dim,
|
|
self.num_heads * self.v_head_dim
|
|
],
|
|
-1,
|
|
)
|
|
|
|
k = torch.empty_like(q).view(
|
|
-1, self.num_heads, (self.qk_nope_head_dim + self.qk_rope_head_dim))
|
|
k[..., :self.qk_nope_head_dim] = k_nope.view(-1, self.num_heads,
|
|
self.qk_nope_head_dim)
|
|
k = k.view(
|
|
-1,
|
|
self.num_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim))
|
|
|
|
# Concat q(including q_pe), k + k_pe, v together as input_qkv
|
|
input_qkv = torch.cat([q, k, v], dim=-1)
|
|
|
|
# out_scale = getattr(self.o_proj, "inv_input_scale", None)
|
|
out_scale = None # Currently we use BF16 MHA for context phase
|
|
|
|
attn_output = self.mha.forward(
|
|
input_qkv,
|
|
None,
|
|
None,
|
|
attn_metadata,
|
|
attention_input_type=AttentionInputType.context_only,
|
|
latent_cache=latent_cache,
|
|
out_scale=out_scale,
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def forward_generation(
|
|
self,
|
|
q: torch.Tensor,
|
|
compressed_kv: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
num_tokens = q.shape[0]
|
|
latent_cache = torch.concat([compressed_kv, k_pe], dim=-1)
|
|
|
|
q_nope, q_pe = q.view([
|
|
-1, self.num_heads, self.qk_nope_head_dim + self.qk_rope_head_dim
|
|
]).split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
|
|
# fused_q contains 1) the result of the following bmm with shape [num_tokens, num_heads, kv_lora_rank]
|
|
# 2) rope(q_pe) with shape [num_tokens, num_heads, qk_rope_head_dim]. rope is applied inside AttentionOp
|
|
fused_q = torch.empty(
|
|
[
|
|
num_tokens, self.num_heads,
|
|
(self.kv_lora_rank + self.qk_rope_head_dim)
|
|
],
|
|
dtype=q.dtype,
|
|
device=q.device,
|
|
)
|
|
|
|
if self.k_b_proj_trans.dtype == torch.bfloat16:
|
|
# [num_heads, num_tokens, self.qk_nope_head_dim]
|
|
q_nope = q_nope.transpose(0, 1)
|
|
# [num_heads, num_tokens, self.kv_lora_rank]
|
|
q_nope_out = fused_q[..., :self.kv_lora_rank].transpose(0, 1)
|
|
|
|
# [num_heads, num_tokens, self.qk_nope_head_dim] x [num_heads, kv_lora_rank, qk_nope_head_dim]
|
|
# -> [num_heads, num_tokens, kv_lora_rank] -> [num_tokens, num_heads, kv_lora_rank]
|
|
# The output of bmm is written directly into fused_q
|
|
torch.ops.trtllm.bmm_out(q_nope,
|
|
self.k_b_proj_trans.transpose(1, 2),
|
|
q_nope_out)
|
|
elif self.k_b_proj_trans.dtype == torch.float8_e4m3fn:
|
|
q_nope, q_nope_scales = torch.ops.trtllm.fp8_batched_quantize_1x128_permute102(
|
|
q_nope)
|
|
# [num_heads, num_tokens, self.kv_lora_rank]
|
|
q_nope_out = fused_q[..., :self.kv_lora_rank].transpose(0, 1)
|
|
|
|
torch.ops.trtllm.fp8_block_scaling_bmm_out(
|
|
q_nope, self.k_b_proj_trans, q_nope_scales,
|
|
self.k_b_proj_trans_scale, q_nope_out)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Missing bmm impl for dtype: {self.k_b_proj_trans.dtype}.")
|
|
|
|
fused_q = fused_q.view([
|
|
num_tokens,
|
|
self.num_heads * (self.kv_lora_rank + self.qk_rope_head_dim)
|
|
])
|
|
|
|
# out_scale = getattr(self.o_proj, "inv_input_scale", None)
|
|
out_scale = None # Although we use FP8 MLA for generation phase, the output is still in BF16
|
|
|
|
attn_out_latent = self.mqa.forward(
|
|
fused_q,
|
|
None,
|
|
None,
|
|
attn_metadata,
|
|
attention_input_type=AttentionInputType.generation_only,
|
|
out_scale=out_scale,
|
|
latent_cache=latent_cache, # kvcache and k_pe
|
|
q_pe=q_pe, # used by `invokeMLARopeGeneration`
|
|
)
|
|
assert (attn_out_latent.shape[0] == q.shape[0] and
|
|
attn_out_latent.shape[1] == self.num_heads * self.kv_lora_rank)
|
|
|
|
# [seq, num_heads, kv_lora_rank]
|
|
attn_out_latent = attn_out_latent.view(
|
|
[-1, self.num_heads, self.kv_lora_rank])
|
|
|
|
attn_output = torch.empty([num_tokens, self.num_heads, self.v_head_dim],
|
|
dtype=attn_out_latent.dtype,
|
|
device=attn_out_latent.device)
|
|
|
|
if self.v_b_proj.dtype == torch.bfloat16:
|
|
# [num_heads, seq, kv_lora_rank] x [num_heads, kv_lora_rank, v_head_dim]
|
|
# -> [num_heads, seq, v_head_dim]
|
|
torch.ops.trtllm.bmm_out(attn_out_latent.transpose(0, 1),
|
|
self.v_b_proj.transpose(1, 2),
|
|
attn_output.transpose(0, 1))
|
|
elif self.v_b_proj.dtype == torch.float8_e4m3fn:
|
|
attn_out_latent, attn_out_latent_scales = torch.ops.trtllm.fp8_batched_quantize_1x128_permute102(
|
|
attn_out_latent)
|
|
|
|
torch.ops.trtllm.fp8_block_scaling_bmm_out(
|
|
attn_out_latent, self.v_b_proj, attn_out_latent_scales,
|
|
self.v_b_proj_scale, attn_output.transpose(0, 1))
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Missing bmm impl for dtype: {self.v_b_proj.dtype}.")
|
|
|
|
# [seq, num_heads * v_head_dim]
|
|
attn_output_flatten = attn_output.flatten(1, 2)
|
|
|
|
return attn_output_flatten
|