mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
181 lines
6.9 KiB
Python
181 lines
6.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import pytest
|
|
from defs.common import venv_check_call, venv_mpi_check_call
|
|
from defs.conftest import get_sm_version, skip_fp8_pre_ada
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
# skip trt flow cases on post-Blackwell-Ultra
|
|
if get_sm_version() >= 103:
|
|
pytest.skip(
|
|
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
|
|
allow_module_level=True)
|
|
|
|
|
|
@pytest.mark.skip_less_device_memory(50000)
|
|
@pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"])
|
|
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
|
|
def test_llm_nemotron_3_8b_1gpu(nemotron_example_root,
|
|
llm_nemotron_3_8b_model_root, llm_datasets_root,
|
|
llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir, dtype, qformat):
|
|
print("Converting checkpoint...")
|
|
model_name = 'nemotron-3-8b'
|
|
ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/1-gpu"
|
|
|
|
quantize_cmd = [
|
|
f"{nemotron_example_root}/../quantization/quantize.py",
|
|
f"--nemo_ckpt_path={llm_nemotron_3_8b_model_root}",
|
|
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
|
|
"--batch_size=64",
|
|
f"--dtype={dtype}",
|
|
f"--qformat={qformat}",
|
|
f"--output_dir={ckpt_dir}",
|
|
]
|
|
venv_check_call(llm_venv, quantize_cmd)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=924",
|
|
"--max_seq_len=1024",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run engines...")
|
|
summary_cmd = [
|
|
f"{nemotron_example_root}/../summarize.py", "--test_trt_llm",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens",
|
|
"--batch_size=8", "--max_ite=40", "--check_accuracy",
|
|
"--tensorrt_llm_rouge1_threshold=18",
|
|
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device_memory(50000)
|
|
@pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"])
|
|
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
|
|
def test_llm_nemotron_4_15b_1gpu(nemotron_example_root,
|
|
llm_nemotron_4_15b_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir, dtype, qformat):
|
|
skip_fp8_pre_ada(use_fp8=qformat == "fp8")
|
|
|
|
print("Converting checkpoint...")
|
|
model_name = 'nemotron-4-15b'
|
|
ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/1-gpu"
|
|
|
|
quantize_cmd = [
|
|
f"{nemotron_example_root}/../quantization/quantize.py",
|
|
f"--nemo_ckpt_path={llm_nemotron_4_15b_model_root}",
|
|
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
|
|
"--batch_size=64",
|
|
f"--dtype={dtype}",
|
|
f"--qformat={qformat}",
|
|
f"--output_dir={ckpt_dir}",
|
|
]
|
|
venv_check_call(llm_venv, quantize_cmd)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=924",
|
|
"--max_seq_len=1024",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run engines...")
|
|
summary_cmd = [
|
|
f"{nemotron_example_root}/../summarize.py", "--test_trt_llm",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens",
|
|
"--batch_size=8", "--max_ite=40", "--check_accuracy",
|
|
"--tensorrt_llm_rouge1_threshold=18",
|
|
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
@pytest.mark.skip_less_device_memory(50000)
|
|
@pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"])
|
|
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
|
|
def test_llm_nemotron_4_15b_2gpus(nemotron_example_root,
|
|
llm_nemotron_4_15b_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir, dtype, qformat):
|
|
|
|
skip_fp8_pre_ada(use_fp8=qformat == 'fp8')
|
|
print("Converting checkpoint...")
|
|
tp_size, pp_size = 2, 1
|
|
world_size = tp_size * pp_size
|
|
model_name = 'nemotron-4-15b'
|
|
ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/tp{tp_size}pp{pp_size}"
|
|
|
|
quantize_cmd = [
|
|
f"{nemotron_example_root}/../quantization/quantize.py",
|
|
f"--nemo_ckpt_path={llm_nemotron_4_15b_model_root}",
|
|
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
|
|
"--batch_size=64",
|
|
f"--dtype={dtype}",
|
|
f"--qformat={qformat}",
|
|
f"--calib_tp_size={tp_size}",
|
|
f"--tp_size={tp_size}",
|
|
f"--output_dir={ckpt_dir}",
|
|
]
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
quantize_cmd)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=924",
|
|
"--max_seq_len=1024",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--workers={world_size}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run engines...")
|
|
summary_cmd = [
|
|
f"{nemotron_example_root}/../summarize.py", "--test_trt_llm",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens",
|
|
"--batch_size=8", "--max_ite=40", "--check_accuracy",
|
|
"--tensorrt_llm_rouge1_threshold=18",
|
|
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
|
|
]
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|