TensorRT-LLMs/cpp/tensorrt_llm/kernels/customAllReduceKernels.cu
2023-10-15 21:26:20 +08:00

486 lines
16 KiB
Plaintext

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "customAllReduceKernels.h"
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include <tuple>
namespace tensorrt_llm::kernels
{
using tensorrt_llm::common::hadd2;
using tensorrt_llm::common::datatype_enum;
using tensorrt_llm::common::divUp;
////////////////////////////////////////////////////////////////////////////////////////////////////
static inline __device__ uint32_t myHadd2(const uint32_t& a, const uint32_t& b)
{
uint32_t c;
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
static inline __device__ uint32_t fadd(const uint32_t& a, const uint32_t& b)
{
uint32_t c;
asm volatile("add.f32 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
static inline __device__ void st_flag_release(uint32_t& flag, uint32_t* flag_addr)
{
#if __CUDA_ARCH__ >= 700
asm volatile("st.global.release.sys.b32 [%1], %0;" ::"r"(flag), "l"(flag_addr));
#else
__threadfence_system();
asm volatile("st.global.volatile.b32 [%1], %0;" ::"r"(flag), "l"(flag_addr));
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
static inline __device__ void ld_flag_acquire(uint32_t& flag, uint32_t* flag_addr)
{
#if __CUDA_ARCH__ >= 700
asm volatile("ld.global.acquire.sys.b32 %0, [%1];" : "=r"(flag) : "l"(flag_addr));
#else
asm volatile("ld.global.volatile.b32 %0, [%1];" : "=r"(flag) : "l"(flag_addr));
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Type Converter that packs data format to 128 bits data type
template <typename T>
struct ARTypeConverter
{
using Type = uint4;
};
#ifdef ENABLE_BF16
template <>
struct ARTypeConverter<__nv_bfloat16>
{
using Type = bf168;
};
#endif
// add two 128b data
template <typename T_IN, typename T_COMP>
inline __device__ T_IN add128b(T_IN a, T_IN b);
template <>
inline __device__ uint4 add128b<uint4, uint16_t>(uint4 a, uint4 b)
{
uint4 c;
c.x = myHadd2(a.x, b.x);
c.y = myHadd2(a.y, b.y);
c.z = myHadd2(a.z, b.z);
c.w = myHadd2(a.w, b.w);
return c;
}
template <>
inline __device__ uint4 add128b<uint4, uint32_t>(uint4 a, uint4 b)
{
uint4 c;
c.x = fadd(a.x, b.x);
c.y = fadd(a.y, b.y);
c.z = fadd(a.z, b.z);
c.w = fadd(a.w, b.w);
return c;
}
#ifdef ENABLE_BF16
template <>
inline __device__ bf168 add128b<bf168, __nv_bfloat16>(bf168 a, bf168 b)
{
bf168 c;
c.x = hadd2(a.x, b.x);
c.y = hadd2(a.y, b.y);
c.z = hadd2(a.z, b.z);
c.w = hadd2(a.w, b.w);
return c;
}
#endif
// init 128bits data with 0
template <typename T>
inline __device__ T init_packed_type();
template <>
inline __device__ uint4 init_packed_type()
{
return make_uint4(0u, 0u, 0u, 0u);
}
#ifdef ENABLE_BF16
template <>
inline __device__ bf168 init_packed_type()
{
bf168 val;
uint4& val_u = reinterpret_cast<uint4&>(val);
val_u = make_uint4(0u, 0u, 0u, 0u);
return val;
}
#endif
__inline__ __device__ void multi_gpu_barrier(
uint32_t** signals, const uint32_t flag, const size_t rank, const size_t world_size, const int tidx, const int bidx)
{
// At the end of the function, we now that has least block 0 from all others GPUs have reached that point.
volatile uint32_t* my_signals = signals[rank];
if (tidx < world_size)
{
// The 1st block notifies the other ranks.
if (bidx == 0)
{
signals[tidx][rank] = flag;
}
// Busy-wait until all ranks are ready.
while (my_signals[tidx] != flag)
{
}
}
// Make sure we can move on...
__syncthreads();
}
__global__ void multiGpuBarrierKernel(AllReduceParams params)
{
multi_gpu_barrier(params.peer_barrier_ptrs_out, params.barrier_flag, params.local_rank, params.ranks_per_node,
threadIdx.x, blockIdx.x);
}
template <typename T, int RANKS_PER_NODE>
static __global__ void oneShotAllReduceKernel(AllReduceParams params)
{
const int bidx = blockIdx.x;
const int tidx = threadIdx.x;
// The number of elements packed into one for comms
static constexpr int NUM_ELTS = std::is_same<T, uint32_t>::value ? 4 : 8;
// Packed data type for comms
using PackedType = typename ARTypeConverter<T>::Type;
multi_gpu_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx);
// The source pointers. Distributed round-robin for the different warps.
const T* src_d[RANKS_PER_NODE];
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
int rank = (params.local_rank + ii) % RANKS_PER_NODE;
src_d[ii] = reinterpret_cast<T*>(params.peer_comm_buffer_ptrs[rank]);
}
// The location in the destination array (load 8 fp16 or load 4 fp32 using LDG.128).
size_t offset = bidx * params.elts_per_block + tidx * NUM_ELTS;
// The end of the segment computed by that block.
size_t max_offset = std::min((bidx + 1) * params.elts_per_block, params.elts_per_rank);
// Each block accumulates the values from the different GPUs on the same node.
for (size_t iter_offset = offset; iter_offset < max_offset; iter_offset += blockDim.x * NUM_ELTS)
{
// Iterate over the different ranks/devices on the node to load the values.
PackedType vals[RANKS_PER_NODE];
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
vals[ii] = reinterpret_cast<const PackedType*>(&src_d[ii][iter_offset])[0];
}
// Sum the values from the different ranks.
PackedType sums = init_packed_type<PackedType>();
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
sums = add128b<PackedType, T>(sums, vals[ii]);
}
// Store to the destination buffer.
reinterpret_cast<PackedType*>(&reinterpret_cast<T*>(params.local_output_buffer_ptr)[iter_offset])[0] = sums;
}
}
template <typename T, int RANKS_PER_NODE>
static __global__ void twoShotAllReduceKernel(AllReduceParams params)
{
// The block index.
const int bidx = blockIdx.x;
// The thread index with the block.
const int tidx = threadIdx.x;
// The number of elements packed into one for comms
static constexpr int NUM_ELTS = std::is_same<T, uint32_t>::value ? 4 : 8;
// Packed data type for comms
using PackedType = typename ARTypeConverter<T>::Type;
// The location in the destination array (load 8 fp16 or load 4 fp32 using LDG.128).
const size_t block_offset = bidx * params.elts_per_block + tidx * NUM_ELTS;
const size_t block_start = params.rank_offset + block_offset;
// The end of the segment computed by that block.
size_t max_offset = min(block_start + params.elts_per_block, params.rank_offset + params.elts_per_rank);
multi_gpu_barrier(params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx);
// The source pointers. Distributed round-robin for the different warps.
T* src_d[RANKS_PER_NODE];
// The destination ranks for round-robin gathering
size_t dst_rank[RANKS_PER_NODE];
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
int rank = (params.local_rank + ii) % RANKS_PER_NODE;
src_d[ii] = reinterpret_cast<T*>(params.peer_comm_buffer_ptrs[rank]);
dst_rank[ii] = rank;
}
// Each block accumulates the values from the different GPUs on the same node.
for (size_t local_offset = block_start; local_offset < max_offset; local_offset += blockDim.x * NUM_ELTS)
{
// Iterate over the different ranks/devices on the node to load the values.
PackedType vals[RANKS_PER_NODE];
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
vals[ii] = reinterpret_cast<const PackedType*>(&src_d[ii][local_offset])[0];
}
// Sum the values from the different ranks.
PackedType sums = init_packed_type<PackedType>();
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
sums = add128b<PackedType, T>(sums, vals[ii]);
}
// Store to the local buffer.
reinterpret_cast<PackedType*>(&src_d[0][local_offset])[0] = sums;
}
// sync threads to make sure all block threads have the sums
__syncthreads();
// barriers among the blocks with the same idx (release-acquire semantics)
if (tidx < RANKS_PER_NODE)
{
// The all blocks notifies the other ranks.
uint32_t flag_block_offset = RANKS_PER_NODE + bidx * RANKS_PER_NODE;
st_flag_release(params.barrier_flag, params.peer_barrier_ptrs_in[tidx] + flag_block_offset + params.local_rank);
// Busy-wait until all ranks are ready.
uint32_t rank_barrier = 0;
uint32_t* peer_barrier_d = params.peer_barrier_ptrs_in[params.local_rank] + flag_block_offset + tidx;
do
{
ld_flag_acquire(rank_barrier, peer_barrier_d);
} while (rank_barrier != params.barrier_flag);
}
// sync threads to make sure all other ranks has the final partial results
__syncthreads();
size_t max_block_offset = min(block_offset + params.elts_per_block, params.elts_per_rank);
// Gather all needed elts from other intra-node ranks
for (size_t local_offset = block_offset; local_offset < max_block_offset; local_offset += blockDim.x * NUM_ELTS)
{
#pragma unroll
for (int ii = 0; ii < RANKS_PER_NODE; ++ii)
{
// use round-robin gathering from other ranks
size_t offset_rank = dst_rank[ii] * params.elts_per_rank + local_offset;
if (offset_rank >= params.elts_total)
{
continue;
}
reinterpret_cast<PackedType*>(&reinterpret_cast<T*>(params.local_output_buffer_ptr)[offset_rank])[0]
= reinterpret_cast<PackedType*>(&src_d[ii][offset_rank])[0];
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
std::tuple<int, int> kernelLaunchConfig(AllReduceStrategyType algo, AllReduceParams& param, size_t elts_per_thread)
{
TLLM_CHECK(param.elts_total % elts_per_thread == 0);
int blocks_per_grid = 1, threads_per_block = DEFAULT_BLOCK_SIZE;
const size_t total_threads = param.elts_total / elts_per_thread;
switch (algo)
{
case AllReduceStrategyType::ONESHOT:
{ // one stage all reduce algo
if (total_threads <= DEFAULT_BLOCK_SIZE)
{ // local reduce
threads_per_block = WARP_SIZE * divUp(total_threads, WARP_SIZE);
blocks_per_grid = 1;
}
else
{ // local reduce
threads_per_block = DEFAULT_BLOCK_SIZE;
blocks_per_grid = divUp(total_threads, DEFAULT_BLOCK_SIZE);
blocks_per_grid = std::min(static_cast<int>(MAX_ALL_REDUCE_BLOCKS), blocks_per_grid);
}
param.elts_per_rank = param.elts_total;
param.elts_per_block = elts_per_thread * divUp(param.elts_per_rank, elts_per_thread * blocks_per_grid);
break;
}
case AllReduceStrategyType::TWOSHOT:
{ // two stage all reduce algo
const size_t elts_per_rank = param.elts_total / param.ranks_per_node;
TLLM_CHECK(elts_per_rank % elts_per_thread == 0);
size_t total_threads = elts_per_rank / elts_per_thread;
total_threads = WARP_SIZE * ((total_threads + WARP_SIZE - 1) / WARP_SIZE);
TLLM_CHECK(total_threads % WARP_SIZE == 0);
while (total_threads % blocks_per_grid != 0 || total_threads / blocks_per_grid > DEFAULT_BLOCK_SIZE)
{
blocks_per_grid += 1;
}
threads_per_block = total_threads / blocks_per_grid;
// NOTE: need to adjust here
if (blocks_per_grid > MAX_ALL_REDUCE_BLOCKS)
{
size_t iter_factor = 1;
while (blocks_per_grid / iter_factor > MAX_ALL_REDUCE_BLOCKS || blocks_per_grid % iter_factor)
{
iter_factor += 1;
}
blocks_per_grid /= iter_factor;
}
param.elts_per_rank = param.elts_total / param.ranks_per_node;
param.elts_per_block = param.elts_per_rank / blocks_per_grid;
param.elts_per_block = elts_per_thread * divUp(param.elts_per_block, elts_per_thread);
param.rank_offset = param.rank * param.elts_per_rank;
break;
}
default: TLLM_THROW("Algorithm not supported here.");
}
return std::make_tuple(blocks_per_grid, threads_per_block);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int RANKS_PER_NODE>
void dispatchARKernels(
AllReduceStrategyType algo, AllReduceParams& param, int blocks_per_grid, int threads_per_block, cudaStream_t stream)
{
if (algo == AllReduceStrategyType::ONESHOT)
{
oneShotAllReduceKernel<T, RANKS_PER_NODE><<<blocks_per_grid, threads_per_block, 0, stream>>>(param);
}
else
{
twoShotAllReduceKernel<T, RANKS_PER_NODE><<<blocks_per_grid, threads_per_block, 0, stream>>>(param);
}
}
template <typename T>
void invokeOneOrTwoShotAllReduceKernel(AllReduceParams& param, AllReduceStrategyType strat, cudaStream_t stream)
{
TLLM_CHECK(strat == AllReduceStrategyType::ONESHOT || strat == AllReduceStrategyType::TWOSHOT);
sync_check_cuda_error();
size_t elts_per_thread = 16 / sizeof(T);
auto [blocks_per_grid, threads_per_block] = kernelLaunchConfig(strat, param, elts_per_thread);
switch (param.ranks_per_node)
{
case 2: dispatchARKernels<T, 2>(strat, param, blocks_per_grid, threads_per_block, stream); break;
case 4: dispatchARKernels<T, 4>(strat, param, blocks_per_grid, threads_per_block, stream); break;
case 6: dispatchARKernels<T, 6>(strat, param, blocks_per_grid, threads_per_block, stream); break;
case 8: dispatchARKernels<T, 8>(strat, param, blocks_per_grid, threads_per_block, stream); break;
default: break;
}
sync_check_cuda_error();
}
void invokeMultiGpuBarrier(AllReduceParams& param, cudaStream_t stream)
{
multiGpuBarrierKernel<<<1, param.ranks_per_node, 0, stream>>>(param);
}
AllReduceParams AllReduceParams::deserialize(const int32_t* buffer, size_t tpSize, size_t tpRank, uint32_t flag_value)
{
void* const* buffer_ptrs = reinterpret_cast<void* const*>(buffer);
AllReduceParams params;
for (int i = 0; i < tpSize; ++i)
{
params.peer_comm_buffer_ptrs[i] = buffer_ptrs[i];
}
for (int i = 0; i < tpSize; ++i)
{
params.peer_barrier_ptrs_in[i] = reinterpret_cast<uint32_t*>(buffer_ptrs[tpSize + i]);
}
for (int i = 0; i < tpSize; ++i)
{
params.peer_barrier_ptrs_out[i] = reinterpret_cast<uint32_t*>(buffer_ptrs[2 * tpSize + i]);
}
params.barrier_flag = flag_value;
params.ranks_per_node = tpSize;
params.rank = tpRank;
params.local_rank = tpRank;
return params;
}
void customAllReduce(kernels::AllReduceParams& params, void* data, size_t elts, size_t size_per_elem,
datatype_enum dataType, AllReduceStrategyType strat, cudaStream_t stream)
{
params.local_output_buffer_ptr = data;
params.elts_total = elts;
if (dataType == datatype_enum::TYPE_FP32)
{
using T = CustomARCommTypeConverter<float>::Type;
kernels::invokeOneOrTwoShotAllReduceKernel<T>(params, strat, stream);
}
else if (dataType == datatype_enum::TYPE_FP16)
{
using T = CustomARCommTypeConverter<half>::Type;
kernels::invokeOneOrTwoShotAllReduceKernel<T>(params, strat, stream);
}
else if (dataType == datatype_enum::TYPE_BF16)
{
using T = CustomARCommTypeConverter<__nv_bfloat16>::Type;
kernels::invokeOneOrTwoShotAllReduceKernel<T>(params, strat, stream);
}
else
{
TLLM_THROW("Unsupported dataType for customAllReduce");
}
}
} // namespace tensorrt_llm::kernels