TensorRT-LLMs/cpp/tensorrt_llm/kernels/samplingPenaltyKernels.cu
2023-09-28 09:00:05 -07:00

376 lines
15 KiB
Plaintext

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <float.h>
#include "tensorrt_llm/kernels/samplingPenaltyKernels.h"
namespace tensorrt_llm
{
namespace kernels
{
// TODO Add half2 implementation
template <typename T>
__global__ void applyTemperaturePenalty(T* logits, const T* bias, const float temperature_inverse, const int m,
const int vocab_size, const int vocab_size_padd)
{
const bool IS_FP16 = std::is_same<T, half>::value;
const T MAX_T_VAL = (IS_FP16) ? 65504.F : FLT_MAX;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < m * vocab_size_padd;
index += blockDim.x * gridDim.x)
{
T bias_val = bias == nullptr ? (T) (0.0f) : bias[index % vocab_size_padd];
if (index % vocab_size_padd < vocab_size)
{
logits[index] = (logits[index] + bias_val) * (T) temperature_inverse;
}
else
{
logits[index] = -MAX_T_VAL;
}
}
}
template <>
__global__ void applyTemperaturePenalty(half2* logits, const half2* bias, const float temperature_inverse,
const int batch_size, const int vocab_size, const int vocab_size_padded)
{
assert(vocab_size % 2 == 0);
assert(vocab_size_padded % 2 == 0);
const half2 mask_val = __float2half2_rn(-65504.0f);
const half2 temp_inv = __float2half2_rn(temperature_inverse);
const int half_vocab_size = vocab_size / 2;
const int half_vocab_size_padded = vocab_size_padded / 2;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < batch_size * half_vocab_size_padded;
index += blockDim.x * gridDim.x)
{
int vocab_idx = index % half_vocab_size_padded;
half2 logit = vocab_idx < half_vocab_size ? __ldg(&logits[index]) : mask_val;
if (vocab_idx < half_vocab_size)
{
if (bias != nullptr)
{
logit = __hadd2(logit, bias[vocab_idx]);
}
logits[index] = __hmul2(logit, temp_inv);
}
}
}
template <typename T>
void invokeApplyTemperaturePenalty(T* logits, const T* bias, const float temperature, const int batch_size,
const int vocab_size, const int vocab_size_padd, cudaStream_t stream)
{
dim3 block(min(vocab_size_padd, 1024));
dim3 grid(min(batch_size * vocab_size_padd / block.x, 65536));
const T temperature_inverse = (T) (1.f / (temperature + 1e-6f));
if (std::is_same<T, half>::value && vocab_size % 2 == 0 && vocab_size_padd % 2 == 0)
{
applyTemperaturePenalty<<<grid, block, 0, stream>>>(reinterpret_cast<half2*>(logits),
reinterpret_cast<const half2*>(bias), temperature_inverse, batch_size, vocab_size, vocab_size_padd);
}
else
{
applyTemperaturePenalty<T>
<<<grid, block, 0, stream>>>(logits, bias, temperature_inverse, batch_size, vocab_size, vocab_size_padd);
}
}
template void invokeApplyTemperaturePenalty(float* logits, const float* bias, const float temperature,
const int batch_size, const int vocab_size, const int vocab_size_padd, cudaStream_t stream);
template void invokeApplyTemperaturePenalty(half* logits, const half* bias, const float temperature,
const int batch_size, const int vocab_size, const int vocab_size_padd, cudaStream_t stream);
template <typename T>
__global__ void batchApplyTemperaturePenalty(T* logits, const T* bias, const float* temperatures, const int batch_size,
const int vocab_size, const int vocab_size_padd)
{
// TODO: Add macro or device function to get MAX_T_VAL.
const bool IS_FP16 = std::is_same<T, half>::value;
const T MAX_T_VAL = (IS_FP16) ? 65504.F : FLT_MAX;
extern __shared__ float inv_temperatures[];
if (threadIdx.x < batch_size)
{
inv_temperatures[threadIdx.x] = 1.0f / (temperatures[threadIdx.x] + 1e-6f);
}
__syncthreads();
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < batch_size * vocab_size_padd;
index += blockDim.x * gridDim.x)
{
int batch_idx = index / vocab_size_padd;
int vocab_idx = index % vocab_size_padd;
T logit = (vocab_idx < vocab_size) ? logits[index] : -MAX_T_VAL;
if (vocab_idx < vocab_size)
{
if (bias != nullptr)
{
logit += bias[vocab_idx];
}
logit *= inv_temperatures[batch_idx];
}
logits[index] = logit;
}
}
__global__ void batchApplyTemperaturePenalty_h2(half2* logits, const half2* bias, const float* temperatures,
const int batch_size, const int vocab_size, const int vocab_size_padded)
{
assert(vocab_size % 2 == 0);
assert(vocab_size_padded % 2 == 0);
extern __shared__ half2 h2_inv_temperatures[];
if (threadIdx.x < batch_size)
{
h2_inv_temperatures[threadIdx.x] = __float2half2_rn(1.f / (temperatures[threadIdx.x] + 1e-6f));
}
__syncthreads();
const half2 mask_val = __float2half2_rn(-65504.0f);
const int half_vocab_size = vocab_size / 2;
const int half_vocab_size_padded = vocab_size_padded / 2;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < batch_size * half_vocab_size_padded;
index += blockDim.x * gridDim.x)
{
int batch_idx = index / half_vocab_size_padded;
int vocab_idx = index % half_vocab_size_padded;
half2 logit = vocab_idx < half_vocab_size ? __ldg(&logits[index]) : mask_val;
if (vocab_idx < half_vocab_size)
{
if (bias != nullptr)
{
logit = __hadd2(logit, bias[vocab_idx]);
}
logits[index] = __hmul2(logit, h2_inv_temperatures[batch_idx]);
}
}
}
template <typename T>
void invokeBatchApplyTemperaturePenalty(T* logits, const T* bias, const float* temperatures, const int batch_size,
const int vocab_size, const int vocab_size_padd, cudaStream_t stream)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
dim3 block(min(vocab_size_padd, 1024));
dim3 grid(min(batch_size * vocab_size_padd / block.x, 65536));
if (std::is_same<T, half>::value && vocab_size % 2 == 0 && vocab_size_padd % 2 == 0)
{
size_t smem_size = sizeof(half2) * batch_size;
batchApplyTemperaturePenalty_h2<<<grid, block, smem_size, stream>>>(reinterpret_cast<half2*>(logits),
reinterpret_cast<const half2*>(bias), temperatures, batch_size, vocab_size, vocab_size_padd);
}
else
{
size_t smem_size = sizeof(float) * batch_size;
batchApplyTemperaturePenalty<T>
<<<grid, block, smem_size, stream>>>(logits, bias, temperatures, batch_size, vocab_size, vocab_size_padd);
}
}
template void invokeBatchApplyTemperaturePenalty(float* logits, const float* bias, const float* temperatures,
const int batch_size, const int vocab_size, const int vocab_size_padd, cudaStream_t stream);
template void invokeBatchApplyTemperaturePenalty(half* logits, const half* bias, const float* temperatures,
const int batch_size, const int vocab_size, const int vocab_size_padd, cudaStream_t stream);
template <typename T, RepetitionPenaltyType penalty_type>
__global__ void applyRepetitionPenalty(T* logits, const float penalty, const int* start_ids, int* output_ids,
const int batch_size, const int local_batch_size, const int vocab_size, const int vocab_size_padd,
const int* input_lengths, const int step)
{
extern __shared__ float penalty_logits[];
int* penalty_indices = (int*) (penalty_logits + step);
logits = logits + blockIdx.x * vocab_size_padd;
const int input_length = input_lengths != nullptr ? input_lengths[blockIdx.x] : 0;
for (int index = threadIdx.x; index < step; index += blockDim.x)
{
// output_ids shape: (batch_size, input_len + output_len)
int penalty_index = output_ids[index * batch_size + blockIdx.x];
if (penalty_index >= vocab_size)
{
continue;
}
penalty_indices[index] = penalty_index;
float logit = (float) logits[penalty_index];
if (penalty_type == RepetitionPenaltyType::Additive)
{
penalty_logits[index] = logit - penalty;
}
else if (penalty_type == RepetitionPenaltyType::Multiplicative)
{
penalty_logits[index] = logit < 0.0f ? logit * penalty : logit / penalty;
}
else if (penalty_type == RepetitionPenaltyType::None)
{
penalty_logits[index] = logit;
}
else
{
// Unsupported type
assert(false);
}
}
if (blockDim.x > 32)
{
__syncthreads();
}
for (int index = threadIdx.x; index < step; index += blockDim.x)
{
// output_ids shape: (batch_size, input_len + output_len)
if (penalty_indices[index] >= vocab_size)
{
continue;
}
logits[penalty_indices[index]] = penalty_logits[index];
}
}
template <typename T, RepetitionPenaltyType penalty_type>
__global__ void batchApplyRepetitionPenalty(T* logits, const float* penalties, const int** output_ids,
const int* sequence_lengths, const int batch_size, const int vocab_size, const int* input_lengths,
const int max_seq_len)
{
extern __shared__ float penalty_logits[];
int* penalty_indices = (int*) (penalty_logits + max_seq_len);
const int batch_idx = blockIdx.x;
const float penalty = penalties[batch_idx];
const int current_step = sequence_lengths[batch_idx];
logits += batch_idx * vocab_size;
// Phase 1. Find indices to penalize and keep the penalized values.
// A vocab id can appear multiple times but should be penalized once.
for (int index = threadIdx.x; index < current_step; index += blockDim.x)
{
// output_ids shape: (batch_size, input_len + output_len)
int penalty_index = output_ids[batch_idx][blockIdx.y * max_seq_len + index];
assert(penalty_index < vocab_size);
penalty_indices[index] = penalty_index;
float logit = (float) logits[penalty_index];
if (penalty_type == RepetitionPenaltyType::Additive)
{
penalty_logits[index] = logit - penalty;
}
else if (penalty_type == RepetitionPenaltyType::Multiplicative)
{
penalty_logits[index] = logit < 0.0f ? logit * penalty : logit / penalty;
}
else if (penalty_type == RepetitionPenaltyType::None)
{
penalty_logits[index] = logit;
}
else
{
// Unsupported type
assert(false);
}
}
if (blockDim.x > 32)
{
__syncthreads();
}
// Phase 2. Replace a logit value by the penalized one.
for (int index = threadIdx.x; index < current_step; index += blockDim.x)
{
logits[penalty_indices[index]] = penalty_logits[index];
}
}
template <typename T>
void invokeBatchApplyRepetitionPenalty(T* logits, const float* penalties, const int** output_ids,
const int* sequence_lengths, const int batch_size, const int local_batch_size, const int vocab_size,
const int* input_lengths, RepetitionPenaltyType penalty_type, int max_seq_len, cudaStream_t stream)
{
// Inputs
// logits [local_batch_size, vocab_size] : logit values.
// penalties [local_batch_size] : repetition penalty factors.
// output_ids int**, [bs] array, each array has [1, max_seq_len]
// sequence_lengths int*, [bs]
// input_lengths [local_batch_size], input lengths
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
dim3 block(min(max_seq_len, 1024));
dim3 grid(batch_size);
size_t smem_size = max_seq_len * (sizeof(float) + sizeof(int));
if (penalty_type == RepetitionPenaltyType::Additive)
{
batchApplyRepetitionPenalty<T, RepetitionPenaltyType::Additive><<<grid, block, smem_size, stream>>>(
logits, penalties, output_ids, sequence_lengths, batch_size, vocab_size, input_lengths, max_seq_len);
}
else if (penalty_type == RepetitionPenaltyType::Multiplicative)
{
batchApplyRepetitionPenalty<T, RepetitionPenaltyType::Multiplicative><<<grid, block, smem_size, stream>>>(
logits, penalties, output_ids, sequence_lengths, batch_size, vocab_size, input_lengths, max_seq_len);
}
else if (penalty_type == RepetitionPenaltyType::None)
{
// do nothing
}
}
template void invokeBatchApplyRepetitionPenalty(float* logits, const float* penalties, const int** output_ids,
const int* sequence_lengths, const int batch_size, const int local_batch_size, const int vocab_size,
const int* input_lengths, RepetitionPenaltyType penalty_type, int max_seq_len, cudaStream_t stream);
template void invokeBatchApplyRepetitionPenalty(half* logits, const float* penalties, const int** output_ids,
const int* sequence_lengths, const int batch_size, const int local_batch_size, const int vocab_size,
const int* input_lengths, RepetitionPenaltyType penalty_type, int max_seq_len, cudaStream_t stream);
template <typename T>
__global__ void batchApplyMinLengthPenalty(T* logits, const int* min_lengths, const int* end_ids,
const int* sequence_lengths, const int* input_lengths, const int vocab_size_padded)
{
int bid = threadIdx.x + blockIdx.x * blockDim.x; // batch index
auto const input_length{input_lengths == nullptr ? 0 : input_lengths[bid]};
// We need +1 because sequence_lengths = num_gen_tokens + input_length - 1, which is equal to the length of k/v
// caches.
if (sequence_lengths[bid] + 1 - input_length < min_lengths[bid])
{
T mask_val = (std::is_same<T, half>::value) ? -65504.0f : -FLT_MAX;
logits[bid * vocab_size_padded + end_ids[bid]] = mask_val;
}
}
template <typename T>
void invokeMinLengthPenalty(T* logits, const int* min_lengths, const int* end_ids, const int* sequnece_lengths,
const int* input_lengths, const int batch_size, const int vocab_size_padded, cudaStream_t stream)
{
const int block_size = min(batch_size, 1024);
const int grid_size = (batch_size + block_size - 1) / block_size;
batchApplyMinLengthPenalty<<<grid_size, block_size, 0, stream>>>(
logits, min_lengths, end_ids, sequnece_lengths, input_lengths, vocab_size_padded);
}
template void invokeMinLengthPenalty(float* logits, const int* min_lengths, const int* end_ids,
const int* sequnece_lengths, const int* input_lengths, const int batch_size, const int vocab_size_padded,
cudaStream_t stream);
template void invokeMinLengthPenalty(half* logits, const int* min_lengths, const int* end_ids,
const int* sequnece_lengths, const int* input_lengths, const int batch_size, const int vocab_size_padded,
cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm