mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
455 lines
19 KiB
Python
455 lines
19 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
from collections import OrderedDict
|
|
|
|
import tensorrt as trt
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size, str_dtype_to_trt
|
|
from ...functional import (PositionEmbeddingType, Tensor, assertion,
|
|
gather_last_token_logits, shape)
|
|
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
|
|
ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm)
|
|
from ...mapping import Mapping
|
|
from ...module import Module, ModuleList
|
|
from ...quantization import QuantMode
|
|
|
|
|
|
class GPTJDecoderLayer(Module):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
max_position_embeddings,
|
|
rotary_dim,
|
|
dtype=None,
|
|
hidden_act='relu',
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0)):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.rotary_dim = rotary_dim
|
|
self.dtype = dtype
|
|
self.hidden_act = hidden_act
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.quant_mode = quant_mode
|
|
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
|
|
dtype=dtype)
|
|
|
|
self.attention = Attention(
|
|
hidden_size=hidden_size,
|
|
num_attention_heads=num_attention_heads,
|
|
rotary_embedding_percentage=rotary_dim /
|
|
(hidden_size // num_attention_heads),
|
|
position_embedding_type=PositionEmbeddingType.rope_gptj,
|
|
max_position_embeddings=max_position_embeddings,
|
|
dtype=dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=False,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
use_int8_kv_cache=quant_mode.has_int8_kv_cache(),
|
|
quant_mode=quant_mode)
|
|
|
|
self.mlp = MLP(hidden_size=hidden_size,
|
|
ffn_hidden_size=hidden_size * 4,
|
|
hidden_act=hidden_act,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
if not default_net(
|
|
).plugin_config.layernorm_plugin and trt.__version__[:3] == '8.6':
|
|
raise AssertionError(
|
|
"You need to enable the LayerNorm plugin for GPT-J with TensorRT 8.6. Please set plugin_config.layernorm_plugin"
|
|
)
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
attention_output = attention_output
|
|
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
hidden_states = attention_output + feed_forward_hidden_states + residual
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class GPTJModel(Module):
|
|
|
|
def __init__(self,
|
|
num_layers,
|
|
num_heads,
|
|
hidden_size,
|
|
vocab_size,
|
|
hidden_act,
|
|
max_position_embeddings,
|
|
rotary_dim,
|
|
dtype=None,
|
|
mapping=Mapping(),
|
|
quant_mode=QuantMode(0)):
|
|
super().__init__()
|
|
self.embedding = Embedding(vocab_size, hidden_size, dtype=dtype)
|
|
|
|
self.layers = ModuleList([
|
|
GPTJDecoderLayer(hidden_size=hidden_size,
|
|
num_attention_heads=num_heads,
|
|
max_position_embeddings=max_position_embeddings,
|
|
rotary_dim=rotary_dim,
|
|
dtype=dtype,
|
|
hidden_act=hidden_act,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
quant_mode=quant_mode) for _ in range(num_layers)
|
|
])
|
|
|
|
self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
|
|
hidden_states = self.embedding(input_ids)
|
|
|
|
if kv_cache_params.past_key_value is None:
|
|
kv_cache_params.past_key_value = tuple([None] * len(self.layers))
|
|
|
|
if use_cache:
|
|
presents = []
|
|
|
|
for layer, past, pointer in zip(
|
|
self.layers, kv_cache_params.past_key_value,
|
|
kv_cache_params.kv_cache_block_pointers):
|
|
hidden_states = layer(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
kv_cache_params=KeyValueCacheParams(
|
|
past_key_value=[past],
|
|
host_past_key_value_lengths=kv_cache_params.
|
|
host_past_key_value_lengths,
|
|
kv_cache_block_pointers=[pointer],
|
|
cache_indirection=kv_cache_params.cache_indirection),
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
presents.append(hidden_states[1])
|
|
hidden_states = hidden_states[0]
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class GPTJForCausalLM(GPTJModel):
|
|
|
|
def __init__(self,
|
|
num_layers,
|
|
num_heads,
|
|
hidden_size,
|
|
vocab_size,
|
|
hidden_act,
|
|
max_position_embeddings,
|
|
rotary_dim,
|
|
dtype,
|
|
logits_dtype='float32',
|
|
mapping=Mapping(),
|
|
quant_mode=QuantMode(0)):
|
|
if isinstance(dtype, str):
|
|
self._dtype = str_dtype_to_trt(dtype)
|
|
else:
|
|
assert isinstance(dtype, trt.DataType)
|
|
self._dtype = dtype
|
|
self._kv_dtype = dtype
|
|
self.quant_mode = quant_mode
|
|
if quant_mode.has_int8_kv_cache():
|
|
self._kv_dtype = str_dtype_to_trt('int8')
|
|
elif quant_mode.has_fp8_kv_cache():
|
|
self._kv_dtype = str_dtype_to_trt('fp8')
|
|
|
|
if isinstance(logits_dtype, str):
|
|
self._logits_dtype = str_dtype_to_trt(logits_dtype)
|
|
else:
|
|
assert isinstance(logits_dtype, trt.DataType)
|
|
self._logits_dtype = logits_dtype
|
|
|
|
self._num_layers = num_layers
|
|
self._num_heads = num_heads
|
|
self._hidden_size = hidden_size
|
|
self._vocab_size = vocab_size
|
|
self._tp_size = mapping.tp_size
|
|
super().__init__(num_layers, num_heads, hidden_size, vocab_size,
|
|
hidden_act, max_position_embeddings, rotary_dim, dtype,
|
|
mapping, quant_mode)
|
|
self._vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
|
|
self.lm_head = ColumnLinear(hidden_size,
|
|
self._vocab_size_padded,
|
|
bias=True,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True)
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
last_token_ids=None,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
hidden_states = super().forward(input_ids, use_cache, kv_cache_params,
|
|
attention_params)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
hidden_states = gather_last_token_logits(
|
|
hidden_states, last_token_ids,
|
|
default_net().plugin_config.remove_input_padding)
|
|
|
|
# [batch_size, hidden_size] -> [batch_size, vocab_size]
|
|
lm_logits = self.lm_head(hidden_states)
|
|
lm_logits.mark_output('logits', self._logits_dtype)
|
|
|
|
if use_cache and default_net().plugin_config.paged_kv_cache == False:
|
|
for i, present in enumerate(presents):
|
|
present.mark_output(f'present_key_value_{i}', self._kv_dtype)
|
|
return (lm_logits, presents)
|
|
|
|
return lm_logits
|
|
|
|
def prepare_inputs(self,
|
|
max_batch_size,
|
|
max_input_len,
|
|
max_new_tokens,
|
|
use_cache,
|
|
max_beam_width,
|
|
max_num_tokens: int = None,
|
|
enable_two_optimization_profiles: bool = False):
|
|
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
|
|
ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
# Prepare inputs
|
|
head_size = self._hidden_size // self._num_heads
|
|
num_heads = self._num_heads // self._tp_size
|
|
max_len = max_input_len + max_new_tokens
|
|
bb_range_gen = [
|
|
1, (max_batch_size * max_beam_width + 1) // 2,
|
|
max_batch_size * max_beam_width
|
|
]
|
|
bb_range_cxt = [1, (max_batch_size + 1) // 2, max_batch_size]
|
|
_bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
|
|
_beam_width_range = [1, (max_beam_width + 1) // 2, max_beam_width]
|
|
inlen_range_cxt = [1, (max_input_len + 1) // 2, max_input_len]
|
|
inlen_range_gen = [1, 1, 1]
|
|
_max_len_range = [0, (max_len + 1) // 2, max_len]
|
|
if enable_two_optimization_profiles:
|
|
bb_range = [bb_range_cxt, bb_range_gen]
|
|
bs_range = [_bs_range, _bs_range]
|
|
beam_width_range = [_beam_width_range, _beam_width_range]
|
|
inlen_range = [inlen_range_cxt, inlen_range_gen]
|
|
max_len_range = [_max_len_range, _max_len_range]
|
|
else:
|
|
bb_range = [bb_range_gen]
|
|
bs_range = [_bs_range]
|
|
beam_width_range = [_beam_width_range]
|
|
inlen_range = [inlen_range_cxt]
|
|
max_len_range = [_max_len_range]
|
|
if max_num_tokens is None:
|
|
num_tokens_range = [
|
|
1, max_batch_size * max_beam_width,
|
|
max(max_input_len * max_batch_size,
|
|
max_beam_width * max_batch_size)
|
|
]
|
|
else:
|
|
num_tokens_range = [1, (max_num_tokens + 1) // 2, max_num_tokens]
|
|
|
|
past_key_value = []
|
|
sequence_length = None
|
|
host_past_key_value_lengths = None
|
|
use_gpt_attention_plugin = default_net(
|
|
).plugin_config.gpt_attention_plugin
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
paged_kv_cache = default_net().plugin_config.paged_kv_cache
|
|
tokens_per_block = default_net().plugin_config.tokens_per_block
|
|
|
|
if remove_input_padding:
|
|
input_ids = Tensor(name='input_ids',
|
|
dtype=trt.int32,
|
|
shape=[1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_fake', [1]),
|
|
('num_tokens', [num_tokens_range]),
|
|
]))
|
|
position_ids = Tensor(name='position_ids',
|
|
dtype=trt.int32,
|
|
shape=[1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_fake', [1]),
|
|
('num_tokens', [num_tokens_range]),
|
|
]))
|
|
else:
|
|
input_ids = Tensor(name='input_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_input_ids', bb_range),
|
|
('input_len', inlen_range),
|
|
]))
|
|
position_ids = Tensor(name='position_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_position_ids', bb_range),
|
|
('input_len', inlen_range),
|
|
]))
|
|
|
|
kv_cache_block_pointers_list = []
|
|
if not paged_kv_cache:
|
|
for i in range(self._num_layers):
|
|
kv_dim_range = OrderedDict([
|
|
('batch_size_kv', bb_range),
|
|
('kv', [2, 2] if enable_two_optimization_profiles else [2]),
|
|
('num_heads', [num_heads, num_heads]
|
|
if enable_two_optimization_profiles else [num_heads]),
|
|
('past_key_len', max_len_range),
|
|
('head_size', [head_size, head_size]
|
|
if enable_two_optimization_profiles else [head_size]),
|
|
])
|
|
kv = Tensor(name=f'past_key_value_{i}',
|
|
dtype=self._kv_dtype,
|
|
shape=[-1, 2, num_heads, -1, head_size],
|
|
dim_range=kv_dim_range)
|
|
past_key_value.append(kv)
|
|
# TODO(kaiyu): Remove this when TRT fix the named dimension
|
|
if not remove_input_padding:
|
|
assertion(shape(input_ids, 0) == shape(kv, 0), 'batch size')
|
|
|
|
kv_cache_block_pointers_list.append(None)
|
|
else:
|
|
max_blocks_per_seq_range = [
|
|
math.ceil(max_len_range[0][0] / tokens_per_block),
|
|
math.ceil(max_len_range[0][1] / tokens_per_block),
|
|
math.ceil(max_len_range[0][2] / tokens_per_block)
|
|
]
|
|
|
|
max_blocks_per_seq_range = [x for x in max_blocks_per_seq_range]
|
|
|
|
for i in range(self._num_layers):
|
|
# (blocks, 2, kv_num_heads, tokens_per_block, head_size)
|
|
|
|
kv_cache_block_pointers = Tensor(
|
|
name=f'kv_cache_block_pointers_{i}',
|
|
dtype=trt.int64,
|
|
shape=[-1, 2, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size', bb_range),
|
|
('kv', [2]),
|
|
('max_blocks_per_seq', [max_blocks_per_seq_range]),
|
|
]))
|
|
kv_cache_block_pointers_list.append(kv_cache_block_pointers)
|
|
past_key_value.append(None)
|
|
|
|
if use_gpt_attention_plugin:
|
|
dim_range = bb_range
|
|
host_past_key_value_lengths = Tensor(
|
|
name='host_past_key_value_lengths',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict(batch_size_kvl=dim_range))
|
|
|
|
context_lengths = None
|
|
host_context_lengths = None
|
|
host_request_types = None
|
|
if use_gpt_attention_plugin and remove_input_padding:
|
|
host_context_lengths = Tensor(name='host_context_lengths',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size',
|
|
bb_range)]))
|
|
if use_gpt_attention_plugin:
|
|
sequence_length = Tensor(
|
|
name='sequence_length',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size', bb_range)]),
|
|
)
|
|
|
|
context_lengths = Tensor(name='context_lengths',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size',
|
|
bb_range)]))
|
|
host_request_types = Tensor(name='host_request_types',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size',
|
|
bb_range)]))
|
|
|
|
last_token_ids = Tensor(name='last_token_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([
|
|
('batch_size', bb_range),
|
|
]))
|
|
|
|
cache_indirection = Tensor(name='cache_indirection',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_cache', bs_range),
|
|
('beam_width', beam_width_range),
|
|
('max_seq_len', max_len_range),
|
|
]))
|
|
|
|
return (input_ids, position_ids, True, last_token_ids,
|
|
KeyValueCacheParams(
|
|
past_key_value=past_key_value,
|
|
host_past_key_value_lengths=host_past_key_value_lengths,
|
|
kv_cache_block_pointers=kv_cache_block_pointers_list,
|
|
cache_indirection=cache_indirection,
|
|
),
|
|
AttentionParams(sequence_length=sequence_length,
|
|
context_lengths=context_lengths,
|
|
host_context_lengths=host_context_lengths,
|
|
max_context_length=max_input_len,
|
|
host_request_types=host_request_types))
|