mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
710 lines
33 KiB
C++
710 lines
33 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/batch_manager/createNewDecoderRequests.h"
|
|
#include "tensorrt_llm/batch_manager/decoderBuffers.h"
|
|
#include "tensorrt_llm/batch_manager/llmRequest.h"
|
|
#include "tensorrt_llm/batch_manager/medusaBuffers.h"
|
|
#include "tensorrt_llm/batch_manager/utils/logitsThread.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/nvtxUtils.h"
|
|
#include "tensorrt_llm/runtime/decoderState.h"
|
|
#include "tensorrt_llm/runtime/decodingInput.h"
|
|
#include "tensorrt_llm/runtime/decodingOutput.h"
|
|
#include "tensorrt_llm/runtime/gptDecoderBatched.h"
|
|
#include "tensorrt_llm/runtime/runtimeKernels.h"
|
|
#include "tensorrt_llm/runtime/speculativeDecodingMode.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
|
|
#include "tensorrt_llm/runtime/utils/speculativeChoicesUtils.h"
|
|
|
|
#include <NvInferRuntimeBase.h>
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tc = tensorrt_llm::common;
|
|
namespace te = tensorrt_llm::executor;
|
|
namespace tk = tensorrt_llm::kernels;
|
|
namespace tr = tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::batch_manager
|
|
{
|
|
|
|
using SizeType32 = CreateNewDecoderRequests::SizeType32;
|
|
using TensorPtr = CreateNewDecoderRequests::TensorPtr;
|
|
|
|
namespace
|
|
{
|
|
|
|
void copySequenceLengths(RequestVector const& contextRequests, DecoderInputBuffers& inputBuffers,
|
|
ITensor& sequenceLengths, SizeType32 beamWidth, runtime::BufferManager const& manager,
|
|
runtime::CudaStream const& stream)
|
|
{
|
|
auto const batchSize = contextRequests.size();
|
|
auto batchSlotsView = tr::ITensor::slice(inputBuffers.setupBatchSlots, 0, batchSize);
|
|
auto fillValuesView = tr::ITensor::slice(inputBuffers.fillValues, 0, batchSize);
|
|
|
|
auto batchSlotsRange = tr::BufferRange<SizeType32>(*batchSlotsView);
|
|
auto fillValuesRange = tr::BufferRange<SizeType32>(*fillValuesView);
|
|
|
|
// fill buffers on host
|
|
SizeType32 batchIdx{0};
|
|
for (auto const& llmReq : contextRequests)
|
|
{
|
|
auto const currentSequenceLen = llmReq->mPromptLen + llmReq->getMaxNumGeneratedTokens();
|
|
// Get position of the current sequence in the decoder
|
|
auto const seqSlot = llmReq->mSeqSlot.value();
|
|
batchSlotsRange[batchIdx] = seqSlot;
|
|
fillValuesRange[batchIdx] = currentSequenceLen;
|
|
++batchIdx;
|
|
}
|
|
|
|
// copy sequence lengths
|
|
{
|
|
auto batchSlotsDeviceView = tr::ITensor::slice(inputBuffers.setupBatchSlotsDevice, 0, batchSize);
|
|
auto fillValuesViewDevice = tr::ITensor::slice(inputBuffers.fillValuesDevice, 0, batchSize);
|
|
|
|
manager.copy(*batchSlotsView, *batchSlotsDeviceView);
|
|
manager.copy(*fillValuesView, *fillValuesViewDevice);
|
|
tr::kernels::invokeFillBatch(sequenceLengths, *batchSlotsDeviceView, beamWidth, *fillValuesViewDevice, stream);
|
|
}
|
|
}
|
|
|
|
/// @brief Retrieve the embedding bias from the request. This potentially makes a copy of the tensor
|
|
/// to the appropriate type if the input tensor does not match it.
|
|
[[nodiscard]] TensorPtr getEmbeddingBias(nvinfer1::DataType logitsType, TensorPtr const& tensor)
|
|
{
|
|
// Check that embedding bias type is same as logits type. If so, we can return the tensor right away
|
|
if (tensor->getDataType() == logitsType)
|
|
{
|
|
return tensor;
|
|
}
|
|
|
|
// Support FP32 input for FP16 embedding bias (in the case of FP8 models)
|
|
if (tensor->getDataType() == nvinfer1::DataType::kFLOAT && logitsType == nvinfer1::DataType::kHALF)
|
|
{
|
|
// Do a deep copy of the tensor to the expected type
|
|
TLLM_LOG_WARNING(
|
|
"Embedding bias data type must be same as model logits type, will copy the tensor from float to half");
|
|
|
|
TLLM_CHECK_WITH_INFO(
|
|
tensor->getMemoryType() != MemoryType::kGPU, "Embedding bias tensor needs to be in CPU memory for casting");
|
|
|
|
auto const shape = tensor->getShape();
|
|
TLLM_CHECK(shape.nbDims == 2); // [1, vocabSizePadded]
|
|
TLLM_CHECK(shape.d[0] == 1);
|
|
auto newTensor = tensorrt_llm::runtime::BufferManager::pinnedPool(shape, logitsType);
|
|
|
|
auto const tensorRange = BufferRange<float>(*tensor);
|
|
auto newTensorRange = BufferRange<half>(*newTensor);
|
|
|
|
std::transform(tensorRange.begin(), tensorRange.end(), newTensorRange.begin(),
|
|
[](float value) -> half { return static_cast<half>(value); });
|
|
|
|
return newTensor;
|
|
}
|
|
|
|
TLLM_THROW("Embedding bias data type must be same as model logits type.");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::tuple<TensorPtr, std::vector<runtime::decoder_batch::Request>, std::vector<runtime::SamplingConfig>>
|
|
CreateNewDecoderRequests::operator()(runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
|
|
executor::DecodingConfig const& decodingConfig, RequestVector const& contextRequests,
|
|
runtime::BufferManager const& bufferManager, nvinfer1::DataType logitsType, DecoderInputBuffers& inputBuffers,
|
|
runtime::decoder::DecoderState& decoderState, CudaStream const& runtimeStream, CudaStream const& decoderStream,
|
|
SizeType32 maxSequenceLength, SizeType32 beamWidth, OptionalRef<MedusaBuffers const> medusaBuffers) const
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(CreateNewDecoderRequests);
|
|
|
|
RequestVector finishedContextRequests;
|
|
std::copy_if(contextRequests.begin(), contextRequests.end(), std::back_inserter(finishedContextRequests),
|
|
[](auto const& llmReq) { return llmReq->isLastContextChunk(); });
|
|
|
|
copySequenceLengths(finishedContextRequests, inputBuffers, *decoderState.getSequenceLengths(), beamWidth,
|
|
bufferManager, runtimeStream);
|
|
|
|
auto decoderRequests = createDecoderRequests(finishedContextRequests, inputBuffers.inputsIds, decodingConfig,
|
|
decoderState, bufferManager, logitsType, modelConfig, worldConfig, runtimeStream, decoderStream,
|
|
maxSequenceLength, medusaBuffers);
|
|
|
|
auto const batchSize = finishedContextRequests.size();
|
|
|
|
std::vector<SamplingConfig> samplingConfigs;
|
|
samplingConfigs.reserve(batchSize);
|
|
for (auto const& llmReq : finishedContextRequests)
|
|
{
|
|
samplingConfigs.push_back(llmReq->mSamplingConfig);
|
|
}
|
|
|
|
TensorPtr batchSlotsView = runtime::ITensor::slice(inputBuffers.setupBatchSlots, 0, batchSize);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
return {std::move(batchSlotsView), std::move(decoderRequests), std::move(samplingConfigs)};
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequest(SizeType32 batchSlot, runtime::decoder_batch::Request const& request,
|
|
SamplingConfig const& samplingConfig, runtime::ModelConfig const& modelConfig,
|
|
runtime::decoder::DecoderState& decoderState, CudaStream const& runtimeStream, CudaStream const& decoderStream,
|
|
SizeType32 maxSequenceLength)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK(batchSlot >= 0);
|
|
|
|
BufferManager manager{std::make_shared<CudaStream>(decoderStream.get())};
|
|
|
|
auto const batchSize = decoderState.getMaxBatchSize();
|
|
TLLM_CHECK(0 <= batchSize && batchSlot < batchSize);
|
|
auto const maxBeamWidth = decoderState.getMaxBeamWidth();
|
|
auto const beamWidth = samplingConfig.beamWidth;
|
|
TLLM_CHECK_WITH_INFO(beamWidth <= maxBeamWidth,
|
|
tc::fmtstr("Beam width (%d) must be smaller than maxBeamWidth (%d) passed to decoder setup function.",
|
|
beamWidth, maxBeamWidth));
|
|
auto const& requestIds = request.ids;
|
|
auto const inputLength = request.inputLen;
|
|
auto const numDecodingEngineTokens = request.generatedTokensPerEngineStep;
|
|
auto const numDecodingDraftEngineTokens = numDecodingEngineTokens - 1;
|
|
auto const maxNewTokens
|
|
= request.maxNewTokens.value_or(maxSequenceLength - inputLength - numDecodingDraftEngineTokens);
|
|
|
|
TLLM_CHECK_WITH_INFO(inputLength + maxNewTokens + numDecodingDraftEngineTokens <= maxSequenceLength,
|
|
tc::fmtstr(
|
|
"Input length (%d) + max new tokens (%d) + draft tokens (%d) must be less than max sequence length (%d).",
|
|
inputLength, maxNewTokens, numDecodingDraftEngineTokens, maxSequenceLength));
|
|
TLLM_CHECK(requestIds->getDataType() == TRTDataType<TokenIdType>::value);
|
|
auto const endId = request.endId.value_or(-1);
|
|
|
|
// input
|
|
auto& dJointInput = decoderState.getJointDecodingInput();
|
|
|
|
dJointInput.beamWidths.at(batchSlot) = beamWidth;
|
|
decoderState.setNumDecodingEngineTokens(batchSlot, numDecodingEngineTokens);
|
|
|
|
TensorPtr const endIdTensorPtr{ITensor::slice(constPointerCast(dJointInput.endIds), batchSlot, 1)};
|
|
runtime::kernels::invokeFill(*endIdTensorPtr, endId, decoderStream);
|
|
|
|
TensorPtr const embeddingBiasSlice = ITensor::slice(constPointerCast(dJointInput.embeddingBias), batchSlot, 1);
|
|
if (request.embeddingBias)
|
|
{
|
|
TLLM_CHECK(request.embeddingBias->getShape().nbDims == 2);
|
|
TLLM_CHECK(request.embeddingBias->getShape().d[0] == 1);
|
|
TLLM_CHECK_WITH_INFO(request.embeddingBias->getShape().d[1] == modelConfig.getVocabSize(),
|
|
"The embedding bias shape is not as expected. Expected last dimension to be same as vocab size: %d.",
|
|
modelConfig.getVocabSize());
|
|
manager.copy(*request.embeddingBias, *embeddingBiasSlice);
|
|
}
|
|
else
|
|
{
|
|
manager.setZero(*embeddingBiasSlice);
|
|
}
|
|
|
|
auto setupWords = [](std::vector<runtime::ITensor::SharedPtr>& jointWordsLists, TensorPtr const& requestWordsList,
|
|
SharedConstPtr& jointWordsPtrs, SharedConstPtr& jointWordsLens, SizeType32& jointMaxWordsLen,
|
|
SizeType32 batchSlot)
|
|
{
|
|
if (requestWordsList)
|
|
{
|
|
auto const wordsLen = requestWordsList->getShape().d[1];
|
|
BufferRange<int32_t*>(*constPointerCast(jointWordsPtrs))[batchSlot]
|
|
= runtime::bufferCast<TokenIdType>(*requestWordsList);
|
|
runtime::bufferCast<SizeType32>(*constPointerCast(jointWordsLens))[batchSlot] = wordsLen;
|
|
// FIXME: this is monotonically growing size
|
|
jointMaxWordsLen = std::max(static_cast<SizeType32>(wordsLen), jointMaxWordsLen);
|
|
|
|
// NOTE: jointWordsList is not used in gptDecoder, but required to keep <name>WordsList's
|
|
// memory allocated
|
|
jointWordsLists[batchSlot] = requestWordsList;
|
|
}
|
|
else
|
|
{
|
|
runtime::bufferCast<SizeType32>(*constPointerCast(jointWordsLens))[batchSlot] = 0;
|
|
}
|
|
};
|
|
|
|
setupWords(dJointInput.stopWordsLists, request.stopWordsList, dJointInput.stopWordsPtrs, dJointInput.stopWordsLens,
|
|
dJointInput.maxStopWordsLen, batchSlot);
|
|
|
|
setupWords(dJointInput.badWordsLists, request.badWordsList, dJointInput.badWordsPtrs, dJointInput.badWordsLens,
|
|
dJointInput.maxBadWordsLen, batchSlot);
|
|
|
|
TensorPtr const sequenceLimitLength{
|
|
ITensor::slice(constPointerCast(dJointInput.sequenceLimitLength), batchSlot, 1)};
|
|
runtime::kernels::invokeFill(*sequenceLimitLength, inputLength + maxNewTokens, decoderStream);
|
|
|
|
TensorPtr const inputLengths{ITensor::slice(constPointerCast(dJointInput.lengths), batchSlot, 1)};
|
|
runtime::kernels::invokeFill(*inputLengths, inputLength, decoderStream);
|
|
|
|
// output
|
|
auto& dJointOutput = decoderState.getJointDecodingOutput();
|
|
auto const outputIdsShape = ITensor::makeShape({1, beamWidth, maxSequenceLength});
|
|
|
|
auto finishedSum = ITensor::slice(dJointOutput.finishedSum, batchSlot, 1);
|
|
manager.setZero(*finishedSum);
|
|
|
|
for (SizeType32 ti = 0; ti < decoderState.getMaxDecodingEngineTokens(); ++ti)
|
|
{
|
|
TensorPtr const newTokensStepView = ITensor::slice(dJointOutput.newTokensSteps, ti, 1);
|
|
newTokensStepView->squeeze(0);
|
|
auto newTokensVec = ITensor::slice(newTokensStepView, batchSlot, 1);
|
|
manager.setZero(*newTokensVec);
|
|
}
|
|
|
|
// FIXME: we call setZero mMaxDecodingEngineTokens times for only 1 element
|
|
for (SizeType32 ti = 0; ti < decoderState.getMaxDecodingEngineTokens(); ++ti)
|
|
{
|
|
TensorPtr const finishedStepsView = ITensor::slice(decoderState.getFinishedSteps(), ti, 1);
|
|
finishedStepsView->squeeze(0);
|
|
TensorPtr const finishedSteps = ITensor::slice(finishedStepsView, batchSlot, 1);
|
|
if (ti < numDecodingEngineTokens)
|
|
{
|
|
manager.setZero(*finishedSteps);
|
|
}
|
|
else
|
|
{
|
|
runtime::kernels::invokeFill(
|
|
*finishedSteps, tk::FinishedState::skipDecoding().toUnderlying(), decoderStream);
|
|
}
|
|
}
|
|
|
|
// cumLogProb is mandatory for beamWidth > 1
|
|
if ((samplingConfig.cumLogProbs.has_value() && samplingConfig.cumLogProbs->at(0)) || beamWidth > 1)
|
|
{
|
|
auto cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, 1);
|
|
manager.setZero(*cumLogProbs);
|
|
}
|
|
|
|
if (samplingConfig.outputLogProbs.has_value() && samplingConfig.outputLogProbs->at(0))
|
|
{
|
|
auto logProbs = ITensor::slice(dJointOutput.logProbs, batchSlot, 1);
|
|
manager.setZero(*logProbs);
|
|
}
|
|
|
|
if (beamWidth > 1)
|
|
{
|
|
TensorPtr const cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, 1);
|
|
runtime::kernels::invokeFill(
|
|
*IBuffer::slice(cumLogProbs, 1, beamWidth - 1), DecodingOutput::kNegativeInfinity, decoderStream);
|
|
|
|
auto parentIds = ITensor::slice(dJointOutput.parentIds, batchSlot, 1);
|
|
parentIds->reshape(outputIdsShape);
|
|
manager.setZero(*parentIds);
|
|
|
|
auto beamHypotheses = dJointOutput.beamHypotheses.slice(batchSlot, 1);
|
|
beamHypotheses.init(manager, endId);
|
|
}
|
|
|
|
// Speculative execution
|
|
if (numDecodingEngineTokens > 1 || decoderState.getSpeculativeDecodingMode().isDraftTokensExternal())
|
|
{
|
|
TLLM_CHECK(beamWidth == 1);
|
|
newRequestSpeculativeDecoding(batchSlot, request, samplingConfig, modelConfig,
|
|
decoderState.getJointDecodingInput(), decoderState.getJointDecodingOutput(), runtimeStream, decoderStream,
|
|
decoderState.getSpeculativeDecodingMode(), decoderState.getMaxDecodingEngineTokens());
|
|
}
|
|
|
|
// fill outputIds with endIds
|
|
TensorPtr const outputIds = ITensor::slice(dJointOutput.ids, batchSlot, 1);
|
|
auto outputIdsTileView = ITensor::view(outputIds, ITensor::makeShape({beamWidth, maxSequenceLength}));
|
|
runtime::kernels::invokeFill(*outputIdsTileView, endId, decoderStream);
|
|
|
|
// copy the request ids into outputIds
|
|
auto const requestIdsShape = requestIds->getShape();
|
|
auto outputIdsView = ITensor::view(outputIds, requestIdsShape);
|
|
manager.copy(*requestIds, *outputIdsView);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequestSpeculativeDecoding(SizeType32 batchIdx,
|
|
runtime::decoder_batch::Request const& request, SamplingConfig const& samplingConfig,
|
|
runtime::ModelConfig const& modelConfig, DecodingInput& jointDecodingInput, DecodingOutput& jointDecodingOutput,
|
|
CudaStream const& runtimeStream, CudaStream const& decoderStream,
|
|
SpeculativeDecodingMode const& speculativeDecodingMode, SizeType32 maxDecodingEngineTokens)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
if (speculativeDecodingMode.predictsDraftTokens())
|
|
{
|
|
auto const& stream = decoderStream;
|
|
BufferManager manager{std::make_shared<CudaStream>(stream.get())};
|
|
|
|
auto& dJointOutput = jointDecodingOutput;
|
|
|
|
TensorPtr nextDraftTokens
|
|
= ITensor::slice(dJointOutput.speculativeDecodingOutputs->nextDraftTokens, batchIdx, 1);
|
|
// FIXME: can we skip this?
|
|
manager.setZero(*nextDraftTokens);
|
|
if (speculativeDecodingMode.variableDraftLength())
|
|
{
|
|
TensorPtr nextDraftTokensLen
|
|
= ITensor::slice(dJointOutput.speculativeDecodingOutputs->nextDraftTokensLen, batchIdx, 1);
|
|
manager.setZero(*nextDraftTokensLen);
|
|
}
|
|
}
|
|
|
|
if (speculativeDecodingMode.isDraftTokensExternal())
|
|
{
|
|
newRequestDraftTokensExternal(batchIdx, request, samplingConfig, jointDecodingInput, decoderStream);
|
|
}
|
|
else if (speculativeDecodingMode.isMedusa())
|
|
{
|
|
newRequestMedusa(batchIdx, request, jointDecodingInput, decoderStream, maxDecodingEngineTokens);
|
|
}
|
|
else if (speculativeDecodingMode.isLookaheadDecoding())
|
|
{
|
|
newRequestLookahead(batchIdx, request, jointDecodingInput, jointDecodingOutput, runtimeStream);
|
|
}
|
|
else if (speculativeDecodingMode.isExplicitDraftTokens())
|
|
{
|
|
newRequestExplicitDraftTokens(batchIdx, request, jointDecodingOutput, runtimeStream);
|
|
}
|
|
else if (speculativeDecodingMode.isEagle())
|
|
{
|
|
newRequestEagle(batchIdx, request, modelConfig, jointDecodingOutput, runtimeStream);
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequestDraftTokensExternal(SizeType32 batchIdx,
|
|
runtime::decoder_batch::Request const& request, SamplingConfig const& samplingConfig,
|
|
DecodingInput& jointDecodingInput, CudaStream const& decoderStream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
BufferManager manager{std::make_shared<CudaStream>(decoderStream.get())};
|
|
|
|
auto& dJointInput = jointDecodingInput;
|
|
|
|
auto const numDraftTokens = request.generatedTokensPerEngineStep - 1;
|
|
|
|
auto const useDraftLogits = request.draftLogits.has_value();
|
|
if (useDraftLogits)
|
|
{
|
|
TensorPtr draftLogitsView = ITensor::view(request.draftLogits.value());
|
|
|
|
TensorPtr draftLogitsReqBatchSlice
|
|
= ITensor::slice(dJointInput.externalDraftTokensInputs->draftLogits, batchIdx, 1);
|
|
draftLogitsReqBatchSlice->squeeze(0);
|
|
TensorPtr draftLogitsReqTokensSlice = ITensor::slice(draftLogitsReqBatchSlice, 0, numDraftTokens);
|
|
manager.copy(*draftLogitsView, *draftLogitsReqTokensSlice);
|
|
}
|
|
auto* useDraftLogitsHostPtr = runtime::bufferCast<bool>(*dJointInput.externalDraftTokensInputs->useDraftLogitsHost);
|
|
useDraftLogitsHostPtr[batchIdx] = useDraftLogits;
|
|
auto useDraftLogitsView = ITensor::slice(dJointInput.externalDraftTokensInputs->useDraftLogits, batchIdx, 1);
|
|
runtime::kernels::invokeFill(*useDraftLogitsView, useDraftLogits, decoderStream);
|
|
|
|
if (numDraftTokens > 0)
|
|
{
|
|
TensorPtr draftTokensReqBatchSlice
|
|
= ITensor::slice(dJointInput.externalDraftTokensInputs->draftTokenIds, batchIdx, 1);
|
|
draftTokensReqBatchSlice->squeeze(0);
|
|
TensorPtr draftTokensReqTokensSlice = ITensor::slice(draftTokensReqBatchSlice, 0, numDraftTokens);
|
|
TensorPtr draftTokensView = ITensor::view(request.draftTokens, ITensor::makeShape({numDraftTokens}));
|
|
manager.copy(*draftTokensView, *draftTokensReqTokensSlice);
|
|
}
|
|
|
|
auto* numDraftTokensHostPtr
|
|
= runtime::bufferCast<SizeType32>(*dJointInput.externalDraftTokensInputs->numDraftTokensHost);
|
|
numDraftTokensHostPtr[batchIdx] = numDraftTokens;
|
|
auto numDraftTokensView = ITensor::slice(dJointInput.externalDraftTokensInputs->numDraftTokens, batchIdx, 1);
|
|
runtime::kernels::invokeFill(*numDraftTokensView, numDraftTokens, decoderStream);
|
|
|
|
bool const useRandomAcceptanceThreshold = !samplingConfig.draftAcceptanceThreshold.has_value();
|
|
float const constantThreshold
|
|
= useRandomAcceptanceThreshold ? 0 : samplingConfig.draftAcceptanceThreshold.value()[0];
|
|
|
|
dJointInput.externalDraftTokensInputs->useRandomAcceptanceThreshold = useRandomAcceptanceThreshold;
|
|
dJointInput.externalDraftTokensInputs->constantThreshold = constantThreshold;
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequestMedusa(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
|
|
DecodingInput& jointDecodingInput, CudaStream const& decoderStream, SizeType32 maxDecodingEngineTokens)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
BufferManager manager{std::make_shared<CudaStream>(decoderStream.get())};
|
|
|
|
auto& dJointInput = jointDecodingInput;
|
|
|
|
TensorPtr curTokensPerStepSlice
|
|
= ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaCurTokensPerStep), batchIdx, 1);
|
|
// Context phase Medusa processes 1 token only, new value from targetTokensPerStep will be filled at the end
|
|
// of first decoder
|
|
runtime::kernels::invokeFill(*curTokensPerStepSlice, 1, decoderStream);
|
|
TensorPtr targetTokensPerStepSlice
|
|
= ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaTargetTokensPerStep), batchIdx, 1);
|
|
auto const generatedTokensPerEngineStep = request.generatedTokensPerEngineStep;
|
|
TLLM_CHECK_WITH_INFO(generatedTokensPerEngineStep <= maxDecodingEngineTokens,
|
|
"Tokens per step for (%d) is larger than maximum tokens per step (%d)", generatedTokensPerEngineStep,
|
|
maxDecodingEngineTokens);
|
|
runtime::kernels::invokeFill(*targetTokensPerStepSlice, generatedTokensPerEngineStep, decoderStream);
|
|
|
|
TensorPtr pathsSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaPaths), batchIdx, 1);
|
|
manager.copy(*request.medusaPaths, *pathsSlice);
|
|
|
|
TensorPtr treeIdsSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaTreeIds), batchIdx, 1);
|
|
manager.copy(*request.medusaTreeIds, *treeIdsSlice);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequestLookahead(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
|
|
DecodingInput& jointDecodingInput, DecodingOutput& jointDecodingOutput, CudaStream const& runtimeStream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK(jointDecodingOutput.lookaheadOutputs);
|
|
|
|
// The first generation step only generate 1 token.
|
|
TensorPtr curTokensPerStepSlice
|
|
= ITensor::slice(constPointerCast(jointDecodingInput.lookaheadInputs->tokensPerStep), batchIdx, 1);
|
|
runtime::kernels::invokeFill(*curTokensPerStepSlice, 1, runtimeStream);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequestExplicitDraftTokens(SizeType32 batchIdx,
|
|
runtime::decoder_batch::Request const& request, DecodingOutput& jointDecodingOutput,
|
|
CudaStream const& runtimeStream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK(jointDecodingOutput.explicitDraftTokensBuffers);
|
|
|
|
TensorPtr positionIdsBaseSlice
|
|
= ITensor::slice(jointDecodingOutput.explicitDraftTokensBuffers->positionIdsBase, batchIdx, 1);
|
|
runtime::kernels::invokeFill(*positionIdsBaseSlice, request.inputLen, runtimeStream);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void CreateNewDecoderRequests::newRequestEagle(SizeType32 batchIdx, runtime::decoder_batch::Request const& request,
|
|
runtime::ModelConfig const& modelConfig, DecodingOutput& jointDecodingOutput, CudaStream const& runtimeStream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK(jointDecodingOutput.eagleBuffers);
|
|
|
|
BufferManager manager{std::make_shared<CudaStream>(runtimeStream.get())};
|
|
|
|
TensorPtr eagleNetCtxRequestTypesHostSlice
|
|
= ITensor::slice(jointDecodingOutput.eagleBuffers->eagleNetCtxRequestTypesHost, batchIdx, 1);
|
|
TensorPtr eagleNetCtxContextLengthsHostSlice
|
|
= ITensor::slice(jointDecodingOutput.eagleBuffers->eagleNetCtxContextLengthsHost, batchIdx, 1);
|
|
TensorPtr eagleNetCtxPastKeyValueLengthsHostSlice
|
|
= ITensor::slice(jointDecodingOutput.eagleBuffers->eagleNetCtxPastKeyValueLengthsHost, batchIdx, 1);
|
|
|
|
runtime::bufferCast<SizeType32>(*eagleNetCtxRequestTypesHostSlice)[0] = 0;
|
|
runtime::bufferCast<SizeType32>(*eagleNetCtxContextLengthsHostSlice)[0] = request.inputLen;
|
|
runtime::bufferCast<SizeType32>(*eagleNetCtxPastKeyValueLengthsHostSlice)[0] = request.inputLen;
|
|
|
|
TensorPtr eagleNetGenRequestTypesHostSlice
|
|
= ITensor::slice(jointDecodingOutput.eagleBuffers->eagleNetGenRequestTypesHost, batchIdx, 1);
|
|
TensorPtr eagleNetGenContextLengthsHostSlice
|
|
= ITensor::slice(jointDecodingOutput.eagleBuffers->eagleNetGenContextLengthsHost, batchIdx, 1);
|
|
TensorPtr eagleNetGenPastKeyValueLengthsHostSlice
|
|
= ITensor::slice(jointDecodingOutput.eagleBuffers->eagleNetGenPastKeyValueLengthsHost, batchIdx, 1);
|
|
|
|
runtime::bufferCast<SizeType32>(*eagleNetGenRequestTypesHostSlice)[0] = 1;
|
|
runtime::bufferCast<SizeType32>(*eagleNetGenContextLengthsHostSlice)[0] = request.inputLen;
|
|
runtime::bufferCast<SizeType32>(*eagleNetGenPastKeyValueLengthsHostSlice)[0] = request.inputLen;
|
|
|
|
auto const eagleModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::EagleModule const>(
|
|
modelConfig.getSpeculativeDecodingModulePtr());
|
|
std::optional<executor::EagleChoices> eagleChoicesOpt;
|
|
|
|
if (request.eagleConfig)
|
|
{
|
|
eagleChoicesOpt = request.eagleConfig->getEagleChoices();
|
|
}
|
|
|
|
if (!request.eagleConfig || !request.eagleConfig->useDynamicTree())
|
|
{
|
|
TensorPtr draftPathsHostSlice = ITensor::slice(jointDecodingOutput.eagleBuffers->draftPathsHost, batchIdx, 1);
|
|
TensorPtr draftPathsSlice = ITensor::slice(jointDecodingOutput.eagleBuffers->draftPaths, batchIdx, 1);
|
|
|
|
// eagleConfig is nullptr or Eagle-1
|
|
std::vector<SizeType32> topKs;
|
|
auto const depth = runtime::utils::initTensorsFromChoices(modelConfig.getSpeculativeDecodingModule(),
|
|
eagleChoicesOpt.value_or(eagleModule->getDefaultEagleChoices()), topKs, nullptr, nullptr, nullptr,
|
|
draftPathsHostSlice, nullptr, {eagleModule->getMaxNonLeafNodesPerLayer()});
|
|
TLLM_CHECK_WITH_INFO(depth == modelConfig.getSpeculativeDecodingModule().getMaxDraftPathLen(),
|
|
"EAGLE-1 requires Eagle-tree depth being equal to the the number of build-time EAGLE layers.");
|
|
|
|
manager.copy(*draftPathsHostSlice, *draftPathsSlice);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
[[nodiscard]] std::vector<runtime::decoder_batch::Request> CreateNewDecoderRequests::createDecoderRequests(
|
|
RequestVector const& finishedContextRequests, TensorPtr const& inputIds,
|
|
executor::DecodingConfig const& decodingConfig, runtime::decoder::DecoderState& decoderState,
|
|
BufferManager const& bufferManager, nvinfer1::DataType logitsType, runtime::ModelConfig const& modelConfig,
|
|
runtime::WorldConfig const& worldConfig, runtime::CudaStream const& runtimeStream,
|
|
runtime::CudaStream const& decoderStream, SizeType32 maxSequenceLength,
|
|
OptionalRef<MedusaBuffers const> medusaBuffers) const
|
|
{
|
|
unsigned decoderInputSize{0};
|
|
for (auto const& llmReq : finishedContextRequests)
|
|
{
|
|
auto const& reqTokens = llmReq->getTokens(0);
|
|
decoderInputSize += reqTokens.size();
|
|
}
|
|
inputIds->resize(decoderInputSize);
|
|
|
|
std::vector<decoder_batch::Request> decoderRequests;
|
|
decoderRequests.reserve(finishedContextRequests.size());
|
|
|
|
SizeType32 inputOffset{0};
|
|
for (auto const& llmReq : finishedContextRequests)
|
|
{
|
|
auto const promptLen = llmReq->getPromptLen();
|
|
auto const& reqTokens = llmReq->getTokens(0);
|
|
TLLM_CHECK(reqTokens.size() == static_cast<decltype(reqTokens.size())>(promptLen));
|
|
TensorPtr inputView = ITensor::slice(inputIds, inputOffset, promptLen);
|
|
bufferManager.copy(reqTokens.data(), *inputView);
|
|
|
|
auto decoderRequest = decoder_batch::Request{inputView, promptLen, llmReq->mMaxNewTokens, llmReq->mEndId};
|
|
|
|
llmReq->mSamplingConfig.normalizeLogProbs = mIsNormalizeLogProbs;
|
|
if (modelConfig.getSpeculativeDecodingMode().isDraftTokensExternal())
|
|
{
|
|
if (llmReq->hasDraftTokens())
|
|
{
|
|
auto const& draftTokens = llmReq->getDraftTokens();
|
|
decoderRequest.draftTokens = bufferManager.copyFrom(*draftTokens, MemoryType::kPINNEDPOOL);
|
|
auto const& draftLogits = llmReq->getDraftLogits();
|
|
if (draftLogits.has_value())
|
|
{
|
|
decoderRequest.draftLogits
|
|
= retrieveDraftLogits(modelConfig, worldConfig, draftLogits.value(), bufferManager);
|
|
}
|
|
decoderRequest.generatedTokensPerEngineStep = draftTokens->size() + 1;
|
|
}
|
|
else
|
|
{
|
|
decoderRequest.generatedTokensPerEngineStep = 1;
|
|
}
|
|
}
|
|
else if (!modelConfig.getSpeculativeDecodingMode().isNone())
|
|
{
|
|
decoderRequest.generatedTokensPerEngineStep = modelConfig.getMaxDecodingTokens();
|
|
}
|
|
if (modelConfig.getSpeculativeDecodingMode().isMedusa())
|
|
{
|
|
TLLM_CHECK(medusaBuffers);
|
|
llmReq->mSamplingConfig.topKMedusaHeads = {medusaBuffers->mTopKs};
|
|
// FIXME: we must set medusa paths and tree ids not from seq slot, but from llmRequest?
|
|
// When multiple microbatches buffers are used, runtime buffers can not be addressed with seqSlot.
|
|
decoderRequest.medusaPaths = ITensor::slice(medusaBuffers->medusaPathsDevice, 0, 1);
|
|
decoderRequest.medusaTreeIds = ITensor::slice(medusaBuffers->medusaTreeIdsDevice, 0, 1);
|
|
}
|
|
else if (modelConfig.getSpeculativeDecodingMode().isLookaheadDecoding())
|
|
{
|
|
decoderRequest.lookaheadRuntimeConfig = llmReq->getLookaheadConfig()
|
|
? llmReq->getLookaheadConfig()
|
|
: decodingConfig.getLookaheadDecodingConfig();
|
|
}
|
|
else if (modelConfig.getSpeculativeDecodingMode().isExplicitDraftTokens())
|
|
{
|
|
// Only Explicit draft tokens model needs dtype to WAR the lack of bf16 decoder.
|
|
decoderRequest.dtype = modelConfig.getDataType();
|
|
}
|
|
else if (modelConfig.getSpeculativeDecodingMode().isEagle())
|
|
{
|
|
decoderRequest.eagleConfig
|
|
= llmReq->getEagleConfig() ? llmReq->getEagleConfig() : decodingConfig.getEagleConfig();
|
|
}
|
|
if (llmReq->getEmbeddingBias().has_value())
|
|
{
|
|
decoderRequest.embeddingBias = getEmbeddingBias(logitsType, llmReq->getEmbeddingBias().value());
|
|
}
|
|
if (llmReq->getBadWordsList().has_value())
|
|
{
|
|
// Move to GPU and remove leading bs1 dimension since this is what decoderRequest expects
|
|
decoderRequest.badWordsList = bufferManager.copyFrom(*llmReq->getBadWordsList().value(), MemoryType::kGPU);
|
|
decoderRequest.badWordsList->squeeze(0);
|
|
}
|
|
if (llmReq->getStopWordsList().has_value())
|
|
{
|
|
decoderRequest.stopWordsList
|
|
= bufferManager.copyFrom(*llmReq->getStopWordsList().value(), MemoryType::kGPU);
|
|
decoderRequest.stopWordsList->squeeze(0);
|
|
}
|
|
|
|
newRequest(llmReq->mSeqSlot.value(), decoderRequest, llmReq->mSamplingConfig, modelConfig, decoderState,
|
|
runtimeStream, decoderStream, maxSequenceLength);
|
|
|
|
decoderRequests.push_back(decoderRequest);
|
|
|
|
inputOffset += promptLen;
|
|
}
|
|
|
|
return decoderRequests;
|
|
}
|
|
|
|
std::shared_ptr<runtime::ITensor> CreateNewDecoderRequests::retrieveDraftLogits(ModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig, std::shared_ptr<runtime::ITensor> const& tensor,
|
|
BufferManager const& bufferManager) const
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
if (!mSpeculativeDecodingFastLogits)
|
|
{
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
return bufferManager.copyFrom(*tensor, MemoryType::kPINNEDPOOL);
|
|
}
|
|
|
|
if (mIsLeaderInOrchMode)
|
|
{
|
|
te::SpeculativeDecodingFastLogitsInfo fastLogitsInfo;
|
|
std::memcpy(&fastLogitsInfo, tensor->data(), sizeof(fastLogitsInfo));
|
|
auto logits = utils::targetModelReceiveLogits(fastLogitsInfo, modelConfig).value();
|
|
|
|
// Broadcast to other ranks if needed
|
|
if (worldConfig.isTensorParallel())
|
|
{
|
|
auto const& commSession = COMM_SESSION;
|
|
auto shape = logits->getShape();
|
|
commSession.bcastValue(shape.d[0], 0);
|
|
commSession.bcastValue(shape.d[1], 0);
|
|
commSession.bcast(logits->data(), logits->getSizeInBytes(), mpi::MpiType::kUINT8, 0);
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
return logits;
|
|
}
|
|
|
|
// Get logits from leader rank
|
|
auto const& commSession = COMM_SESSION;
|
|
int64_t dims[2];
|
|
commSession.bcastValue(dims[0], 0);
|
|
commSession.bcastValue(dims[1], 0);
|
|
auto const logitsDtype = modelConfig.getLogitsDtype();
|
|
auto logits = tensorrt_llm::runtime::BufferManager::pinnedPool(ITensor::makeShape({dims[0], dims[1]}), logitsDtype);
|
|
commSession.bcast(logits->data(), logits->getSizeInBytes(), mpi::MpiType::kUINT8, 0);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
return logits;
|
|
};
|
|
|
|
} // namespace tensorrt_llm::batch_manager
|