mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Add llama4 disagg accuracy tests Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> * Make it async and add GSM8K benchmark Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> --------- Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
395 lines
14 KiB
Python
395 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import os
|
|
from contextlib import contextmanager
|
|
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
import click
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
import tensorrt_llm.profiler as profiler
|
|
|
|
try:
|
|
from lm_eval.api.model import TemplateLM
|
|
except ImportError:
|
|
TemplateLM = object
|
|
|
|
from .._torch import LLM as PyTorchLLM
|
|
from ..llmapi import LLM, RequestOutput
|
|
from ..logger import logger
|
|
from ..sampling_params import SamplingParams
|
|
from .interface import Evaluator
|
|
|
|
|
|
class LmEvalWrapper(TemplateLM):
|
|
|
|
def __init__(self,
|
|
llm: Union[LLM, PyTorchLLM],
|
|
sampling_params: Optional[SamplingParams] = None):
|
|
super().__init__()
|
|
self.llm = llm
|
|
self.sampling_params = sampling_params
|
|
|
|
@property
|
|
def eot_token_id(self) -> int:
|
|
return self.llm.tokenizer.eos_token_id
|
|
|
|
def apply_chat_template(self,
|
|
chat_history: List[Dict[str, str]],
|
|
add_generation_prompt: bool = True) -> str:
|
|
"""
|
|
Method to apply a chat template to a list of chat history between user and model.
|
|
"""
|
|
return self.llm.tokenizer.apply_chat_template(
|
|
chat_history,
|
|
tokenize=False,
|
|
add_generation_prompt=add_generation_prompt,
|
|
continue_final_message=not add_generation_prompt,
|
|
)
|
|
|
|
@property
|
|
def tokenizer_name(self) -> str:
|
|
return self.llm.tokenizer.name_or_path.replace("/", "__")
|
|
|
|
def tok_encode(self, string: str, **kwargs) -> List[int]:
|
|
return self.llm.tokenizer.encode(string, **kwargs)
|
|
|
|
def _loglikelihood_tokens(self, requests,
|
|
**kwargs) -> List[Tuple[float, bool]]:
|
|
raise NotImplementedError()
|
|
|
|
def loglikelihood_rolling(self,
|
|
requests,
|
|
disable_tqdm: bool = False) -> List[float]:
|
|
raise NotImplementedError()
|
|
|
|
def _get_sampling_params(self, gen_kwargs: dict) -> SamplingParams:
|
|
params_mapping = {
|
|
"temperature": "temperature",
|
|
"top_p": "top_p",
|
|
"max_gen_toks": "max_tokens",
|
|
"until": "stop",
|
|
}
|
|
if self.sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
else:
|
|
sampling_params = copy.deepcopy(self.sampling_params)
|
|
for lm_eval_key, trtllm_key in params_mapping.items():
|
|
value = gen_kwargs.pop(lm_eval_key, None)
|
|
if value is not None:
|
|
setattr(sampling_params, trtllm_key, value)
|
|
return sampling_params
|
|
|
|
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
|
profiler.start("trtllm exec")
|
|
results = []
|
|
for request in tqdm(requests,
|
|
desc="Submitting requests",
|
|
disable=disable_tqdm):
|
|
prompt, gen_kwargs = request.args
|
|
sampling_params = self._get_sampling_params(gen_kwargs)
|
|
output = self.llm.generate_async(prompt,
|
|
sampling_params=sampling_params)
|
|
results.append(output)
|
|
|
|
outputs = []
|
|
for output in tqdm(results,
|
|
desc="Fetching responses",
|
|
disable=disable_tqdm):
|
|
outputs.append(output.result())
|
|
|
|
profiler.stop("trtllm exec")
|
|
elapsed_time = profiler.elapsed_time_in_sec("trtllm exec")
|
|
logger.info(f"TRTLLM execution time: {elapsed_time:.3f} seconds.")
|
|
profiler.reset("trtllm exec")
|
|
|
|
return [output.outputs[0].text for output in outputs]
|
|
|
|
|
|
class LmEvalEvaluator(Evaluator):
|
|
|
|
def __init__(self,
|
|
task_name: str,
|
|
dataset_path: str = None,
|
|
num_samples: Optional[int] = None,
|
|
random_seed: int = 0,
|
|
apply_chat_template: bool = False,
|
|
system_prompt: Optional[str] = None):
|
|
try:
|
|
import lm_eval
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
f"Evaluation task {self.__class__.__name__} requires `lm_eval`. "
|
|
"Please install the package first, e.g., `pip install lm_eval`."
|
|
) from e
|
|
super().__init__(random_seed=random_seed,
|
|
apply_chat_template=apply_chat_template,
|
|
system_prompt=system_prompt)
|
|
self.task_name = task_name
|
|
self.dataset_path = dataset_path
|
|
self.num_samples = num_samples
|
|
|
|
task_manager = lm_eval.tasks.TaskManager(
|
|
include_path=f"{os.path.dirname(__file__)}/lm_eval_tasks")
|
|
with self._patch_lm_eval():
|
|
self.task_dict = lm_eval.tasks.get_task_dict(
|
|
task_name, task_manager=task_manager)
|
|
# Few-shot random seed
|
|
self.task_dict[self.task_name].set_fewshot_seed(random_seed)
|
|
# Shuffle dataset
|
|
data = self.task_dict[self.task_name].dataset
|
|
for split in data.keys():
|
|
data[split] = data[split].shuffle(random_seed)
|
|
|
|
@contextmanager
|
|
def _patch_lm_eval(self):
|
|
if self.dataset_path is None:
|
|
yield
|
|
return
|
|
|
|
import lm_eval
|
|
self._task_config_post_init = lm_eval.api.task.TaskConfig.__post_init__
|
|
|
|
def _patched(task_config, *args, **kwargs):
|
|
task_config.dataset_path = self.dataset_path
|
|
self._task_config_post_init(task_config, *args, **kwargs)
|
|
|
|
lm_eval.api.task.TaskConfig.__post_init__ = _patched
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
lm_eval.api.task.TaskConfig.__post_init__ = self._task_config_post_init
|
|
|
|
def generate_samples(self) -> Iterable[tuple]:
|
|
raise NotImplementedError()
|
|
|
|
def compute_score(self, outputs: List[RequestOutput], references: List[str],
|
|
*auxiliaries) -> float:
|
|
raise NotImplementedError()
|
|
|
|
def evaluate(self,
|
|
llm: Union[LLM, PyTorchLLM],
|
|
sampling_params: Optional[SamplingParams] = None) -> float:
|
|
import lm_eval
|
|
results = lm_eval.evaluate(lm=LmEvalWrapper(llm, sampling_params),
|
|
task_dict=self.task_dict,
|
|
limit=self.num_samples,
|
|
apply_chat_template=self.apply_chat_template,
|
|
system_instruction=self.system_prompt)
|
|
# Normalize scores to range 0~100
|
|
scores = results["results"][self.task_name]
|
|
for metric in scores.keys():
|
|
if isinstance(scores[metric], (float, int)):
|
|
scores[metric] *= 100
|
|
logger.info(
|
|
f"lm-eval {self.task_name} results (scores normalized to range 0~100):\n{lm_eval.utils.make_table(results)}"
|
|
)
|
|
|
|
average_acc = np.mean(
|
|
[acc for m, acc in scores.items() if "_stderr" not in m])
|
|
logger.info(
|
|
f"lm-eval {self.task_name} average accuracy: {average_acc:.2f}")
|
|
return average_acc
|
|
|
|
@classmethod
|
|
def command_harness(cls, ctx, **kwargs):
|
|
llm: Union[LLM, PyTorchLLM] = ctx.obj
|
|
evaluator = cls(dataset_path=kwargs.pop("dataset_path", None),
|
|
num_samples=kwargs.pop("num_samples", None),
|
|
random_seed=kwargs.pop("random_seed", 0),
|
|
apply_chat_template=kwargs.pop("apply_chat_template",
|
|
False),
|
|
system_prompt=kwargs.pop("system_prompt", None))
|
|
sampling_params = SamplingParams(
|
|
max_tokens=kwargs.pop("max_output_length"),
|
|
truncate_prompt_tokens=kwargs.pop("max_input_length"))
|
|
evaluator.evaluate(llm, sampling_params)
|
|
llm.shutdown()
|
|
|
|
|
|
class GSM8K(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gsm8k", **kwargs)
|
|
|
|
@click.command("gsm8k")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GSM8K dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option("--system_prompt",
|
|
type=Optional[str],
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=256,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GSM8K.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class GPQADiamond(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gpqa_diamond_cot_zeroshot_aa", **kwargs)
|
|
|
|
@click.command("gpqa_diamond")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GPQA dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option("--system_prompt",
|
|
type=Optional[str],
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GPQADiamond.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class GPQAMain(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gpqa_main_cot_zeroshot_aa", **kwargs)
|
|
|
|
@click.command("gpqa_main")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GPQA dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option("--system_prompt",
|
|
type=Optional[str],
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GPQAMain.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class GPQAExtended(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gpqa_extended_cot_zeroshot_aa", **kwargs)
|
|
|
|
@click.command("gpqa_extended")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GPQA dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option("--system_prompt",
|
|
type=Optional[str],
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GPQAExtended.command_harness(ctx, **kwargs)
|