mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
120 lines
4.2 KiB
C++
120 lines
4.2 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/cudaAllocator.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/decodingInput.h"
|
|
#include "tensorrt_llm/runtime/decodingOutput.h"
|
|
#include "tensorrt_llm/runtime/samplingConfig.h"
|
|
#include <curand_kernel.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#include <NvInferRuntime.h>
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
|
|
namespace layers
|
|
{
|
|
// Forward declaration
|
|
template <typename T>
|
|
class DynamicDecodeLayer;
|
|
} // namespace layers
|
|
|
|
namespace runtime
|
|
{
|
|
|
|
class IGptDecoder
|
|
{
|
|
public:
|
|
virtual ~IGptDecoder() = default;
|
|
|
|
virtual void setup(SamplingConfig const& samplingConfig, size_t batchSize, SizeType maxSequenceLength) = 0;
|
|
|
|
virtual bool forward(DecodingOutput& output, DecodingInput const& input) = 0;
|
|
|
|
virtual void forwardAsync(DecodingOutput& output, DecodingInput const& input) = 0;
|
|
|
|
virtual void gatherTree(ITensor& finalOutputIds, DecodingOutput const& decodingOutput,
|
|
DecodingInput const& decodingInput, BufferManager const& manager)
|
|
= 0;
|
|
|
|
virtual const SamplingConfig& getSamplingConfig() = 0;
|
|
|
|
static void acceptDraftTokensByIds(const ITensor& targetTokenIds, const ITensor& draftTokenIds,
|
|
const ITensor& contextLengths, const ITensor& numDraftTokens, ITensor& sequenceLengths,
|
|
const ITensor& finishedVec, ITensor& finishedFinal, ITensor& finishedSum,
|
|
BufferManager::CudaStreamPtr const& stream);
|
|
|
|
static void acceptDraftTokensByLogits(ITensor& draftLogits, const ITensor& targetLogits, ITensor& draftProbs,
|
|
ITensor& targetProbs, const ITensor& numDraftTokens, ITensor& finished, SizeType vocabSize,
|
|
SizeType vocabSizePadded, bool useRandomAcceptThreshold, float randomAcceptThreshold,
|
|
curandState_t* curandState, BufferManager::CudaStreamPtr const& stream);
|
|
|
|
static std::unique_ptr<IGptDecoder> create(
|
|
nvinfer1::DataType dtype, size_t vocabSize, size_t vocabSizePadded, BufferManager::CudaStreamPtr const& stream);
|
|
};
|
|
|
|
template <typename T>
|
|
class GptDecoder : public virtual IGptDecoder
|
|
{
|
|
|
|
public:
|
|
using CudaStreamPtr = BufferManager::CudaStreamPtr;
|
|
using TensorPtr = std::shared_ptr<ITensor>;
|
|
|
|
GptDecoder(size_t vocabSize, size_t vocabSizePadded, CudaStreamPtr const& stream);
|
|
|
|
void setup(SamplingConfig const& samplingConfig, size_t batchSize, SizeType maxSequenceLength) override;
|
|
|
|
bool forward(DecodingOutput& output, DecodingInput const& input) override;
|
|
|
|
void forwardAsync(DecodingOutput& output, DecodingInput const& input) override;
|
|
|
|
void gatherTree(ITensor& finalOutputIds, DecodingOutput const& decodingOutput, DecodingInput const& decodingInput,
|
|
BufferManager const& manager) override;
|
|
|
|
const SamplingConfig& getSamplingConfig() override
|
|
{
|
|
return mSamplingConfig;
|
|
}
|
|
|
|
private:
|
|
BufferManager mManager;
|
|
std::shared_ptr<tensorrt_llm::layers::DynamicDecodeLayer<T>> mDynamicDecodeLayer;
|
|
|
|
TensorPtr mLogProbsTiled; // Buffer used to store the transpose of the logProbs. Needed because the kernels have
|
|
// been written to use that shape.
|
|
SamplingConfig mSamplingConfig;
|
|
};
|
|
|
|
inline std::unique_ptr<IGptDecoder> IGptDecoder::create(
|
|
nvinfer1::DataType dtype, size_t vocabSize, size_t vocabSizePadded, BufferManager::CudaStreamPtr const& stream)
|
|
{
|
|
switch (dtype)
|
|
{
|
|
case nvinfer1::DataType::kFLOAT: return std::make_unique<GptDecoder<float>>(vocabSize, vocabSizePadded, stream);
|
|
case nvinfer1::DataType::kHALF: return std::make_unique<GptDecoder<half>>(vocabSize, vocabSizePadded, stream);
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
} // namespace runtime
|
|
} // namespace tensorrt_llm
|