mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
352 lines
14 KiB
Python
352 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
import time
|
|
|
|
# isort: off
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
# isort: on
|
|
from transformers import AutoModelForCausalLM
|
|
from weight import load_from_hf_phi
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import str_dtype_to_trt
|
|
from tensorrt_llm.builder import Builder
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
|
|
MODEL_NAME = "phi"
|
|
hf_gpt = None
|
|
|
|
|
|
def get_engine_name(model, dtype, tp_size, rank):
|
|
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
|
|
|
|
|
|
def serialize_engine(engine, path):
|
|
logger.info(f'Serializing engine to {path}...')
|
|
tik = time.time()
|
|
with open(path, 'wb') as f:
|
|
f.write(engine)
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Engine serialized. Total time: {t}')
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--world_size',
|
|
type=int,
|
|
default=1,
|
|
help='world size, only support tensor parallelism now')
|
|
parser.add_argument(
|
|
'--model_dir',
|
|
type=str,
|
|
default=None,
|
|
help='The path to HF Phi model / checkpoints to read weights from')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument(
|
|
'--timing_cache',
|
|
type=str,
|
|
default='model.cache',
|
|
help=
|
|
'The path of to read timing cache from, will be ignored if the file does not exist'
|
|
)
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
parser.add_argument('--vocab_size', type=int, default=50432)
|
|
parser.add_argument('--n_layer', type=int, default=44)
|
|
parser.add_argument('--n_positions', type=int, default=2048)
|
|
parser.add_argument('--n_embd', type=int, default=6144)
|
|
parser.add_argument('--n_head', type=int, default=64)
|
|
parser.add_argument('--hidden_act', type=str, default='gelu')
|
|
parser.add_argument(
|
|
'--rotary_pct',
|
|
type=float,
|
|
default=0.25,
|
|
help="Percentage of hidden dimensions to allocate to rotary embeddings."
|
|
)
|
|
parser.add_argument('--max_batch_size', type=int, default=64)
|
|
parser.add_argument('--max_input_len', type=int, default=1024)
|
|
parser.add_argument('--max_output_len', type=int, default=1024)
|
|
parser.add_argument('--max_beam_width', type=int, default=1)
|
|
parser.add_argument('--use_gpt_attention_plugin',
|
|
nargs='?',
|
|
const='float16',
|
|
type=str,
|
|
default=False,
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument('--use_gemm_plugin',
|
|
nargs='?',
|
|
const='float16',
|
|
type=str,
|
|
default=False,
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument('--use_layernorm_plugin',
|
|
nargs='?',
|
|
const='float16',
|
|
type=str,
|
|
default=False,
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument('--parallel_build', default=False, action='store_true')
|
|
parser.add_argument('--enable_context_fmha',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument('--enable_context_fmha_fp32_acc',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument(
|
|
'--multi_block_mode',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
|
|
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
|
|
)
|
|
parser.add_argument('--gpus_per_node', type=int, default=8)
|
|
parser.add_argument('--enable_debug_output',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument(
|
|
'--output_dir',
|
|
type=str,
|
|
default='engine_outputs',
|
|
help=
|
|
'The path to save the serialized engine files, timing cache file and model configs'
|
|
)
|
|
parser.add_argument('--remove_input_padding',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=1, # Meta does TP on hidden dim
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (--embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set --embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when --embedding_sharding_dim=0'
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--strongly_typed',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
logger.set_level(args.log_level)
|
|
|
|
if args.model_dir is not None:
|
|
global hf_gpt
|
|
logger.info(f'Loading HF Phi model from {args.model_dir}...')
|
|
hf_gpt = AutoModelForCausalLM.from_pretrained(args.model_dir,
|
|
trust_remote_code=True)
|
|
args.n_embd = hf_gpt.config.hidden_size
|
|
args.n_head = hf_gpt.config.num_attention_heads
|
|
args.n_layer = hf_gpt.config.num_hidden_layers
|
|
args.n_positions = hf_gpt.config.max_position_embeddings
|
|
args.vocab_size = hf_gpt.config.vocab_size
|
|
args.rotary_pct = hf_gpt.config.rotary_dim / (args.n_embd //
|
|
args.n_head)
|
|
|
|
return args
|
|
|
|
|
|
def build_rank_engine(builder: Builder,
|
|
builder_config: tensorrt_llm.builder.BuilderConfig,
|
|
engine_name, rank, args):
|
|
'''
|
|
@brief: Build the engine on the given rank.
|
|
@param rank: The rank to build the engine.
|
|
@param args: The cmd line arguments.
|
|
@return: The built engine.
|
|
'''
|
|
kv_dtype = str_dtype_to_trt(args.dtype)
|
|
rotary_dim = int((args.n_embd // args.n_head) * args.rotary_pct)
|
|
|
|
# Initialize Module
|
|
tensorrt_llm_gpt = tensorrt_llm.models.PhiForCausalLM(
|
|
num_layers=args.n_layer,
|
|
num_heads=args.n_head,
|
|
hidden_size=args.n_embd,
|
|
vocab_size=args.vocab_size,
|
|
hidden_act=args.hidden_act,
|
|
max_position_embeddings=args.n_positions,
|
|
rotary_dim=rotary_dim,
|
|
dtype=kv_dtype,
|
|
mapping=Mapping(world_size=args.world_size,
|
|
rank=rank,
|
|
tp_size=args.world_size), # TP only
|
|
apply_query_key_layer_scaling=builder_config.
|
|
apply_query_key_layer_scaling,
|
|
use_parallel_embedding=args.use_parallel_embedding,
|
|
embedding_sharding_dim=args.embedding_sharding_dim)
|
|
|
|
if args.model_dir is not None:
|
|
assert hf_gpt is not None, f'Could not load weights from hf_gpt model as it is not loaded yet.'
|
|
|
|
if args.world_size > 1:
|
|
assert (
|
|
args.n_embd % args.world_size == 0
|
|
), f'Embedding size/hidden size must be divisible by world size.'
|
|
assert (
|
|
args.n_head % args.world_size == 0
|
|
), f'Number of attention heads must be divisible by world size.'
|
|
|
|
load_from_hf_phi(tensorrt_llm_gpt, hf_gpt, args.dtype, rank,
|
|
args.world_size)
|
|
|
|
# Module -> Network
|
|
network = builder.create_network()
|
|
network.trt_network.name = engine_name
|
|
if args.use_gpt_attention_plugin:
|
|
network.plugin_config.set_gpt_attention_plugin(
|
|
dtype=args.use_gpt_attention_plugin)
|
|
if args.use_gemm_plugin:
|
|
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
|
|
if args.use_layernorm_plugin:
|
|
network.plugin_config.set_layernorm_plugin(
|
|
dtype=args.use_layernorm_plugin)
|
|
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
|
|
if args.enable_context_fmha:
|
|
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
|
|
if args.enable_context_fmha_fp32_acc:
|
|
network.plugin_config.set_context_fmha(
|
|
ContextFMHAType.enabled_with_fp32_acc)
|
|
if args.multi_block_mode:
|
|
network.plugin_config.enable_mmha_multi_block_mode()
|
|
if args.world_size > 1:
|
|
network.plugin_config.set_nccl_plugin(args.dtype)
|
|
if args.remove_input_padding:
|
|
network.plugin_config.enable_remove_input_padding()
|
|
with net_guard(network):
|
|
# Prepare
|
|
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
|
|
|
|
# Forward
|
|
inputs = tensorrt_llm_gpt.prepare_inputs(args.max_batch_size,
|
|
args.max_input_len,
|
|
args.max_output_len, True,
|
|
args.max_beam_width)
|
|
tensorrt_llm_gpt(*inputs)
|
|
if args.enable_debug_output:
|
|
# mark intermediate nodes' outputs
|
|
for k, v in tensorrt_llm_gpt.named_network_outputs():
|
|
v = v.trt_tensor
|
|
v.name = k
|
|
network.trt_network.mark_output(v)
|
|
v.dtype = str_dtype_to_trt(args.dtype)
|
|
|
|
tensorrt_llm.graph_rewriting.optimize(network)
|
|
|
|
engine = None
|
|
|
|
# Network -> Engine
|
|
engine = builder.build_engine(network, builder_config)
|
|
if rank == 0:
|
|
config_path = os.path.join(args.output_dir, 'config.json')
|
|
builder.save_config(builder_config, config_path)
|
|
|
|
return engine
|
|
|
|
|
|
def build(rank, args):
|
|
torch.cuda.set_device(rank % args.gpus_per_node)
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
# when doing serializing build, all ranks share one engine
|
|
apply_query_key_layer_scaling = False
|
|
builder = Builder()
|
|
|
|
cache = None
|
|
for cur_rank in range(args.world_size):
|
|
# skip other ranks if parallel_build is enabled
|
|
if args.parallel_build and cur_rank != rank:
|
|
continue
|
|
builder_config = builder.create_builder_config(
|
|
name=MODEL_NAME,
|
|
precision=args.dtype,
|
|
timing_cache=args.timing_cache if cache is None else cache,
|
|
tensor_parallel=args.world_size, # TP only
|
|
parallel_build=args.parallel_build,
|
|
num_layers=args.n_layer,
|
|
num_heads=args.n_head,
|
|
hidden_size=args.n_embd,
|
|
vocab_size=args.vocab_size,
|
|
hidden_act=args.hidden_act,
|
|
max_position_embeddings=args.n_positions,
|
|
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
|
|
max_batch_size=args.max_batch_size,
|
|
max_beam_width=args.max_beam_width,
|
|
max_input_len=args.max_input_len,
|
|
max_output_len=args.max_output_len,
|
|
strongly_typed=args.strongly_typed)
|
|
|
|
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
|
|
cur_rank)
|
|
engine = build_rank_engine(builder, builder_config, engine_name,
|
|
cur_rank, args)
|
|
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
|
|
|
|
if cur_rank == 0:
|
|
# Use in-memory timing cache for multiple builder passes.
|
|
if not args.parallel_build:
|
|
cache = builder_config.trt_builder_config.get_timing_cache()
|
|
|
|
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
|
|
|
|
if rank == 0:
|
|
ok = builder.save_timing_cache(
|
|
builder_config, os.path.join(args.output_dir, "model.cache"))
|
|
assert ok, "Failed to save timing cache."
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
tik = time.time()
|
|
if args.parallel_build and args.world_size > 1 and \
|
|
torch.cuda.device_count() >= args.world_size:
|
|
logger.warning(
|
|
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
|
|
)
|
|
mp.spawn(build, nprocs=args.world_size, args=(args, ))
|
|
else:
|
|
args.parallel_build = False
|
|
logger.info('Serially build TensorRT engines.')
|
|
build(0, args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Total time of building all {args.world_size} engines: {t}')
|