TensorRT-LLMs/tensorrt_llm/models/gpt/model.py
Kaiyu Xie deaae40bd7
Update TensorRT-LLM (#787)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-02 17:54:32 +08:00

599 lines
24 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import tensorrt as trt
from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import (Tensor, gather_last_token_logits,
is_gated_activation, non_gated_version)
from ...layers import (MLP, MOE, Attention, AttentionMaskType, AttentionParams,
ColumnLinear, Embedding, GatedMLP, KeyValueCacheParams,
LayerNorm, LoraParams, MoeConfig, PositionEmbeddingType,
PromptTuningEmbedding)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ...quantization import QuantMode
from ..generation_mixin import GenerationMixin
def MLPFactory(hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
moe_config: MoeConfig = MoeConfig(),
tp_group=None,
tp_size=1,
tp_rank=0,
quant_mode=QuantMode(0),
instance_id: int = 0):
if moe_config.has_moe():
return MOE(moe_config,
hidden_size,
ffn_hidden_size,
hidden_act,
bias,
dtype,
tp_group,
tp_size,
tp_rank,
quant_mode=quant_mode)
MLPClass = GatedMLP if is_gated_activation(hidden_act) else MLP
hidden_act = non_gated_version(hidden_act)
return MLPClass(hidden_size, ffn_hidden_size, hidden_act, bias, dtype,
tp_group, tp_size, quant_mode, instance_id)
class GPTEmbedding(Module):
def __init__(self,
vocab_size,
hidden_size,
max_position_embeddings,
position_embedding_type=PositionEmbeddingType.learned_absolute,
dtype=None,
use_prompt_tuning=False,
tensor_parallel=1,
tensor_parallel_group=None,
sharding_dim=0,
tp_rank=None,
instance_id: int = 0):
super().__init__()
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.use_prompt_tuning = use_prompt_tuning
EmbeddingCls = PromptTuningEmbedding if use_prompt_tuning else Embedding
self.vocab_embedding = EmbeddingCls(vocab_size,
hidden_size,
dtype=dtype,
tp_size=tensor_parallel,
tp_group=tensor_parallel_group,
sharding_dim=sharding_dim,
tp_rank=tp_rank,
instance_id=instance_id)
if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
self.position_embedding = Embedding(max_position_embeddings,
hidden_size,
dtype=dtype)
def forward(self,
input_ids,
position_ids,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None,
workspace: Optional[Tensor] = None):
args = []
if self.use_prompt_tuning:
args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size]
x = self.vocab_embedding(input_ids, *args, workspace=workspace)
if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
x = x + self.position_embedding(position_ids)
return x
class GPTDecoderLayer(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings,
num_layers,
dtype=None,
apply_query_key_layer_scaling=False,
attention_mask_type=AttentionMaskType.causal,
hidden_act='relu',
position_embedding_type=PositionEmbeddingType.learned_absolute,
quant_mode=QuantMode(0),
rotary_embedding_percentage=1.0,
rotary_base=10000.0,
rotary_scaling=None,
inter_size=None,
bias=True,
num_kv_heads=None,
moe_config: MoeConfig = MoeConfig(),
use_auto_parallel=False,
tp_group=None,
tp_size=1,
tp_rank=0,
instance_id: int = 0):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.num_layers = num_layers
self.dtype = dtype
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.attention_mask_type = attention_mask_type
self.hidden_act = hidden_act
self.position_embedding_type = position_embedding_type
self.tp_group = tp_group
self.tp_size = tp_size
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.attention = Attention(
hidden_size,
num_attention_heads,
num_kv_heads,
max_position_embeddings,
num_layers,
apply_query_key_layer_scaling,
dtype=dtype,
attention_mask_type=attention_mask_type,
position_embedding_type=position_embedding_type,
rotary_embedding_percentage=rotary_embedding_percentage,
rotary_embedding_base=rotary_base,
rotary_embedding_scaling=rotary_scaling,
bias=bias,
tp_group=tp_group,
tp_size=tp_size,
use_auto_parallel=use_auto_parallel,
tp_rank=tp_rank,
quant_mode=quant_mode,
instance_id=2 * instance_id)
if inter_size is None:
inter_size = hidden_size * 4
self.mlp = MLPFactory(hidden_size=hidden_size,
ffn_hidden_size=inter_size,
hidden_act=hidden_act,
dtype=dtype,
bias=bias,
moe_config=moe_config,
tp_group=tp_group,
tp_size=tp_size,
tp_rank=tp_rank,
quant_mode=quant_mode,
instance_id=2 * instance_id + 1)
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
workspace=None,
lora_layer_params=None):
assert isinstance(hidden_states, Tensor)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
workspace=workspace,
lora_layer_params=lora_layer_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states, workspace=workspace)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class GPTModel(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype=None,
mapping=Mapping(),
use_auto_parallel=False,
apply_query_key_layer_scaling=False,
position_embedding_type=PositionEmbeddingType.learned_absolute,
rotary_embedding_percentage=1.0,
rotary_base=10000.0,
rotary_scaling=None,
inter_size=None,
bias=True,
quant_mode=QuantMode(0),
num_kv_heads=None,
use_prompt_tuning=False,
use_parallel_embedding=False,
embedding_sharding_dim=0,
moe_config=MoeConfig()):
super().__init__()
self.mapping = mapping
self.embedding = GPTEmbedding(
vocab_size,
hidden_size,
max_position_embeddings,
position_embedding_type,
dtype=dtype,
use_prompt_tuning=use_prompt_tuning,
tensor_parallel=mapping.tp_size if use_parallel_embedding else 1,
tensor_parallel_group=mapping.tp_group
if use_parallel_embedding else None,
sharding_dim=embedding_sharding_dim,
tp_rank=mapping.tp_rank,
instance_id=2 * num_layers,
)
self.layers = ModuleList([
GPTDecoderLayer(
hidden_size=hidden_size,
num_attention_heads=num_heads,
max_position_embeddings=max_position_embeddings,
num_layers=num_layers,
dtype=dtype,
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
attention_mask_type=AttentionMaskType.causal,
hidden_act=hidden_act,
position_embedding_type=position_embedding_type,
rotary_embedding_percentage=rotary_embedding_percentage,
rotary_base=rotary_base,
rotary_scaling=rotary_scaling,
num_kv_heads=num_kv_heads,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_auto_parallel=use_auto_parallel,
inter_size=inter_size,
bias=bias,
quant_mode=quant_mode,
instance_id=i,
moe_config=moe_config,
) for i in range(num_layers)
])
self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
def forward(self,
input_ids,
position_ids,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None,
workspace=None,
lora_params=None):
hidden_states = self.embedding(input_ids,
position_ids,
prompt_embedding_table,
prompt_tasks,
prompt_vocab_size,
workspace=workspace)
kv_cache_params.fill_none_tensor_list(len(self.layers))
if use_cache:
presents = []
for layer_idx, (
layer, past, pointer, host_pointer,
max_attention_window_size) in enumerate(
zip(self.layers, kv_cache_params.past_key_value,
kv_cache_params.kv_cache_block_pointers,
kv_cache_params.host_kv_cache_block_pointers,
kv_cache_params.host_max_attention_window_sizes)):
lora_layer_params = None
if lora_params.lora_ranks is not None:
lora_layer_params = lora_params.get_layer_params(layer_idx)
hidden_states = layer(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=max_attention_window_size,
host_sink_token_length=kv_cache_params.
host_sink_token_length,
kv_cache_block_pointers=[pointer],
host_kv_cache_block_pointers=[host_pointer],
cache_indirection=kv_cache_params.cache_indirection),
attention_params=attention_params,
workspace=workspace,
lora_layer_params=lora_layer_params)
if use_cache:
presents.append(hidden_states[1])
hidden_states = hidden_states[0]
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class GPTLMHeadModel(GPTModel, GenerationMixin):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype,
logits_dtype='float32',
mapping=Mapping(),
use_auto_parallel=False,
apply_query_key_layer_scaling=False,
position_embedding_type=PositionEmbeddingType.learned_absolute,
rotary_embedding_percentage=1.0,
rotary_base=10000.0,
rotary_scaling=None,
inter_size=None,
bias=True,
quant_mode=QuantMode(0),
num_kv_heads=None,
use_prompt_tuning=False,
use_parallel_embedding=False,
embedding_sharding_dim=0,
moe_config=MoeConfig(),
share_embedding_table=False):
if isinstance(dtype, str):
self._kv_dtype = str_dtype_to_trt(dtype)
else:
assert isinstance(dtype, trt.DataType)
self._kv_dtype = dtype
if share_embedding_table and mapping.tp_size > 1:
if (not use_parallel_embedding) or (use_parallel_embedding and
embedding_sharding_dim == 1):
raise NotImplementedError(
'For multiple-processes cases, sharing the embedding table must set use_parallel_embedding=True and embedding_sharding_dim = 0'
)
self._dtype = self._kv_dtype
self.quant_mode = quant_mode
if quant_mode.has_int8_kv_cache():
self._kv_dtype = str_dtype_to_trt('int8')
elif quant_mode.has_fp8_kv_cache():
self._kv_dtype = str_dtype_to_trt('fp8')
if isinstance(logits_dtype, str):
self._logits_dtype = str_dtype_to_trt(logits_dtype)
else:
assert isinstance(logits_dtype, trt.DataType)
self._logits_dtype = logits_dtype
self._num_layers = num_layers
self._num_heads = num_heads
self._hidden_size = hidden_size
self._vocab_size = vocab_size
self._tp_size = mapping.tp_size
self._num_kv_heads = num_kv_heads if num_kv_heads else num_heads
super().__init__(
num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
dtype=dtype,
mapping=mapping,
use_auto_parallel=use_auto_parallel,
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
position_embedding_type=position_embedding_type,
rotary_embedding_percentage=rotary_embedding_percentage,
rotary_base=rotary_base,
rotary_scaling=rotary_scaling,
inter_size=inter_size,
bias=bias,
quant_mode=quant_mode,
num_kv_heads=num_kv_heads,
use_prompt_tuning=use_prompt_tuning,
use_parallel_embedding=use_parallel_embedding,
embedding_sharding_dim=embedding_sharding_dim,
moe_config=moe_config,
)
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
share_weight = None
if share_embedding_table:
share_weight = self.embedding.vocab_embedding.weight
self.lm_head = ColumnLinear(hidden_size,
vocab_size_padded,
bias=False,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True,
share_weight=share_weight)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
last_token_ids=None,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None,
workspace=None,
lora_params=None):
hidden_states = super().forward(input_ids, position_ids, use_cache,
attention_mask, kv_cache_params,
attention_params,
prompt_embedding_table, prompt_tasks,
prompt_vocab_size, workspace,
lora_params)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = gather_last_token_logits(
hidden_states, last_token_ids,
default_net().plugin_config.remove_input_padding)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output('logits', self._logits_dtype)
if use_cache:
if default_net().plugin_config.paged_kv_cache == False:
for i, present in enumerate(presents):
present.mark_output(f'present_key_value_{i}',
self._kv_dtype)
return (lm_logits, presents)
return lm_logits
def prepare_inputs(self,
max_batch_size,
max_input_len,
max_new_tokens,
use_cache,
max_beam_width: int = 1,
max_num_tokens: int = None,
prompt_embedding_table_size: int = 0,
gather_all_token_logits: bool = False,
max_draft_len: int = 0,
lora_target_modules: List[str] = None):
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
# Prepare inputs
head_size = self._hidden_size // self._num_heads
num_heads_kv = self._num_kv_heads
remove_input_padding = default_net().plugin_config.remove_input_padding
use_gpt_attention_plugin = default_net(
).plugin_config.gpt_attention_plugin
use_gemm_plugin = default_net().plugin_config.gemm_plugin
paged_kv_cache = default_net().plugin_config.paged_kv_cache
tokens_per_block = default_net().plugin_config.tokens_per_block
use_custom_all_reduce = default_net(
).plugin_config.use_custom_all_reduce
use_lora_plugin = default_net().plugin_config.lora_plugin
model_inputs = self.prepare_basic_inputs(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
max_input_len=max_input_len,
max_new_tokens=max_new_tokens,
num_kv_heads=num_heads_kv,
head_size=head_size,
num_layers=self._num_layers,
kv_dtype=self._kv_dtype,
num_heads=self._num_heads,
dtype=self._dtype,
remove_input_padding=remove_input_padding,
use_gpt_attention_plugin=use_gpt_attention_plugin,
use_gemm_plugin=use_gemm_plugin,
use_custom_all_reduce=use_custom_all_reduce,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
gather_all_token_logits=gather_all_token_logits,
mapping=self.mapping,
max_num_tokens=max_num_tokens,
prompt_embedding_table_size=prompt_embedding_table_size,
use_lora_plugin=use_lora_plugin,
max_draft_len=max_draft_len,
lora_target_modules=lora_target_modules)
return (
model_inputs['input_ids'],
model_inputs['position_ids'],
True,
model_inputs['last_token_ids'],
model_inputs['attention_mask'],
KeyValueCacheParams(
past_key_value=model_inputs['past_key_value'],
host_past_key_value_lengths=model_inputs[
'host_past_key_value_lengths'],
host_max_attention_window_sizes=model_inputs[
'host_max_attention_window_sizes'],
host_sink_token_length=model_inputs['host_sink_token_length'],
kv_cache_block_pointers=model_inputs[
'kv_cache_block_pointers_list'],
host_kv_cache_block_pointers=model_inputs[
'host_kv_cache_block_pointers_list'],
cache_indirection=model_inputs['cache_indirection'],
),
AttentionParams(
sequence_length=model_inputs['sequence_length'],
context_lengths=model_inputs['context_lengths'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types']),
model_inputs['prompt_embedding_table'],
model_inputs['tasks'],
model_inputs['prompt_vocab_size'],
model_inputs['all_reduce_workspace'],
LoraParams(
model_inputs['lora_ranks'],
model_inputs['lora_weights_pointers'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types']),
)