mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
179 lines
5.4 KiB
C++
179 lines
5.4 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/opUtils.h"
|
|
#include "tensorrt_llm/runtime/torchUtils.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <c10/cuda/CUDAStream.h>
|
|
#include <torch/extension.h>
|
|
#if ENABLE_MULTI_DEVICE
|
|
#include <nccl.h>
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
|
|
#include <cassert>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
namespace torch_ext
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
|
|
namespace
|
|
{
|
|
|
|
class ReducescatterOp
|
|
{
|
|
public:
|
|
ReducescatterOp(std::set<int> group)
|
|
: mGroup(std::move(group))
|
|
{
|
|
}
|
|
|
|
~ReducescatterOp() = default;
|
|
|
|
int initialize()
|
|
{
|
|
TLLM_LOG_TRACE("%s start for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank());
|
|
mNcclComm = getComm(mGroup);
|
|
TLLM_LOG_TRACE("%s stop for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank());
|
|
return 0;
|
|
}
|
|
|
|
torch::Tensor run(torch::Tensor const& input, torch::optional<torch::List<int64_t>> sizes)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(mNcclComm.get() != nullptr, "mNcclComm should be initialized before used");
|
|
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
|
|
auto type = tensorrt_llm::runtime::TorchUtils::dataType(input.scalar_type());
|
|
std::vector<int64_t> outputShape = input.sizes().vec();
|
|
if (sizes.has_value())
|
|
{
|
|
auto rank = COMM_SESSION.getRank();
|
|
int groupRank = 0;
|
|
for (auto const& currentRank : mGroup)
|
|
{
|
|
if (rank == currentRank)
|
|
break;
|
|
++groupRank;
|
|
}
|
|
TLLM_CHECK(static_cast<size_t>(groupRank) < mGroup.size());
|
|
outputShape[0] = sizes.value()[groupRank];
|
|
}
|
|
else
|
|
{
|
|
outputShape[0] = outputShape[0] / mGroup.size();
|
|
}
|
|
auto output = torch::empty(outputShape, input.options());
|
|
if (sizes.has_value())
|
|
{
|
|
size_t numel_base = std::accumulate(outputShape.cbegin() + 1, outputShape.cend(), 1, std::multiplies<>{});
|
|
int64_t split_offset = 0;
|
|
ncclGroupStart();
|
|
for (int root = 0; root < static_cast<int>(mGroup.size()); ++root)
|
|
{
|
|
auto split_size = sizes.value()[root];
|
|
NCCLCHECK_THROW(
|
|
ncclReduce(input.index({torch::indexing::Slice(split_offset, torch::indexing::None)}).data_ptr(),
|
|
output.mutable_data_ptr(), numel_base * split_size, (*getDtypeMap())[type], ncclSum, root,
|
|
*mNcclComm, stream));
|
|
split_offset += split_size;
|
|
}
|
|
ncclGroupEnd();
|
|
}
|
|
else
|
|
{
|
|
NCCLCHECK_THROW(ncclReduceScatter(input.data_ptr(), output.mutable_data_ptr(), output.numel(),
|
|
(*getDtypeMap())[type], ncclSum, *mNcclComm, stream));
|
|
}
|
|
return output;
|
|
}
|
|
|
|
std::vector<torch::Tensor> run_list(
|
|
torch::TensorList input_list, torch::optional<torch::List<int64_t>> sizes) noexcept
|
|
{
|
|
std::vector<torch::Tensor> output_list;
|
|
output_list.reserve(input_list.size());
|
|
ncclGroupStart();
|
|
for (auto const& input : input_list)
|
|
{
|
|
auto output = run(input, sizes);
|
|
output_list.push_back(output);
|
|
}
|
|
ncclGroupEnd();
|
|
return output_list;
|
|
}
|
|
|
|
private:
|
|
std::set<int> mGroup;
|
|
std::shared_ptr<ncclComm_t> mNcclComm;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
|
|
extern torch::Tensor reducescatter(
|
|
torch::Tensor input, torch::optional<torch::List<int64_t>> sizes, torch::List<int64_t> group_)
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
std::set<int> group;
|
|
for (int64_t rank : group_)
|
|
{
|
|
group.insert(static_cast<int>(rank));
|
|
}
|
|
ReducescatterOp op(group);
|
|
op.initialize();
|
|
auto output = op.run(input, sizes);
|
|
return output;
|
|
#else
|
|
return input;
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
}
|
|
|
|
extern std::vector<torch::Tensor> reducescatter_list(
|
|
torch::TensorList input_list, torch::optional<torch::List<int64_t>> sizes, torch::List<int64_t> group_)
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
std::set<int> group;
|
|
for (int64_t rank : group_)
|
|
{
|
|
group.insert(static_cast<int>(rank));
|
|
}
|
|
ReducescatterOp op(group);
|
|
op.initialize();
|
|
auto output_list = op.run_list(input_list, sizes);
|
|
return output_list;
|
|
#else
|
|
return input_list.vec();
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
}
|
|
|
|
} // namespace torch_ext
|
|
|
|
TORCH_LIBRARY_FRAGMENT(trtllm, m)
|
|
{
|
|
m.def("reducescatter(Tensor input, int[]? sizes, int[] group) -> Tensor");
|
|
m.def("reducescatter_list(Tensor[] input_list, int[]? sizes, int[] group) -> Tensor[]");
|
|
}
|
|
|
|
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
|
|
{
|
|
m.impl("reducescatter", &torch_ext::reducescatter);
|
|
m.impl("reducescatter_list", &torch_ext::reducescatter_list);
|
|
}
|