TensorRT-LLMs/tests/integration/defs/examples/test_medusa.py
brb-nv 7a2cd255bc
fix: Skip dummy medusa/eagle tests when WORLD_SIZE env variable is missing (#4786)
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
2025-06-02 02:21:24 -07:00

402 lines
18 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
from defs.common import (convert_weights, get_dummy_spec_decoding_heads,
venv_check_call)
from defs.conftest import skip_fp8_pre_ada
from defs.trt_test_alternative import check_call
@pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8'])
@pytest.mark.parametrize("data_type", ['bfloat16'])
@pytest.mark.parametrize("num_medusa_heads", [4], ids=['4-heads'])
@pytest.mark.parametrize("medusa_model_roots", ["medusa-vicuna-7b-v1.3"],
indirect=True)
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_medusa_1gpu(batch_size, data_type, medusa_model_roots,
medusa_example_root, llm_datasets_root, llm_rouge_root,
num_medusa_heads, llm_venv, cmodel_dir, engine_dir,
use_py_session):
print("Build engines...")
model_name = "medusa"
model_dir = convert_weights(llm_venv=llm_venv,
example_root=medusa_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=medusa_model_roots,
data_type=data_type)
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
f"--max_beam_width=1",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--max_input_len=1024",
"--max_seq_len=1536",
f"--max_batch_size={batch_size}",
"--paged_kv_cache=enable",
'--speculative_decoding_mode=medusa',
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run summarize...")
summary_cmd = [
f"{medusa_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{medusa_model_roots[0]}", "--tokenizer_dir",
f"{medusa_model_roots[0]}", f"--engine_dir={engine_dir}",
"--check_accuracy", "--tensorrt_llm_rouge1_threshold=24",
"--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]",
f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if use_py_session:
summary_cmd.append("--use_py_session")
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8'])
@pytest.mark.parametrize("data_type", ['bfloat16', 'float16'])
@pytest.mark.parametrize("num_medusa_heads", [4], ids=['4-heads'])
@pytest.mark.parametrize("medusa_model_roots", ["medusa-vicuna-7b-v1.3"],
indirect=True)
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
@pytest.mark.parametrize("base_model_datatype", ['fp8'])
def test_llm_medusa_with_qaunt_base_model_1gpu(
batch_size, data_type, medusa_model_roots, medusa_example_root,
base_model_datatype, llm_datasets_root, llm_rouge_root,
num_medusa_heads, llm_venv, cmodel_dir, engine_dir, use_py_session):
model_name = f"vicuna_meudsa_quant_base_mode_{base_model_datatype}"
quant_model_ckpt_output_path = os.path.join(cmodel_dir, model_name)
print("Quant base model to FP8 and combine medusa head")
quant_cmd = [
f"{medusa_example_root}/../quantization/quantize.py",
f"--model_dir={medusa_model_roots[0]}", f"--dtype={data_type}",
f"--qformat={base_model_datatype}",
f"--kv_cache_dtype={base_model_datatype}",
f"--output_dir={quant_model_ckpt_output_path}", "--calib_size=512",
f"--medusa_model_dir={medusa_model_roots[1]}",
f"--num_medusa_heads={num_medusa_heads}"
]
# https://nvbugs/4658787
# WAR before medusa tests can work offline
env = {"HF_DATASETS_OFFLINE": "0"}
venv_check_call(llm_venv, quant_cmd, env=env)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={quant_model_ckpt_output_path}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
f"--max_beam_width=1",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--max_input_len=1024",
"--max_seq_len=1536",
f"--max_batch_size={batch_size}",
"--paged_kv_cache=enable",
'--speculative_decoding_mode=medusa',
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run summarize...")
summary_cmd = [
f"{medusa_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{medusa_model_roots[0]}", "--tokenizer_dir",
f"{medusa_model_roots[0]}", f"--engine_dir={engine_dir}",
"--check_accuracy", "--tensorrt_llm_rouge1_threshold=24",
"--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]",
f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if use_py_session:
summary_cmd.append("--use_py_session")
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8'])
@pytest.mark.parametrize("medusa_model_roots", ["llama3.1-medusa-8b-hf_v0.1"],
indirect=True)
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_medusa_fp8_modelOpt_ckpt_1gpu(batch_size, medusa_model_roots,
medusa_example_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir,
use_py_session):
skip_fp8_pre_ada(use_fp8=True)
model_ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=medusa_example_root,
cmodel_dir=cmodel_dir,
model="llama",
model_path=medusa_model_roots[0])
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_ckpt_dir}",
f"--output_dir={engine_dir}",
"--gemm_plugin=float16",
'--speculative_decoding_mode=medusa',
f"--max_batch_size={batch_size}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run summarize...")
summary_cmd = [
f"{medusa_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{medusa_model_roots[0]}", "--tokenizer_dir",
f"{medusa_model_roots[0]}", f"--engine_dir={engine_dir}",
"--check_accuracy", "--tensorrt_llm_rouge1_threshold=24",
"--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [1, 6], [0, 7, 0]]",
f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if use_py_session:
summary_cmd.append("--use_py_session")
venv_check_call(llm_venv, summary_cmd)
def test_with_dummy_medusa(hf_model_root, medusa_example_root, llm_venv,
cmodel_dir, engine_dir, batch_size, data_type,
num_medusa_heads, use_py_session, model_type):
# We unset WORLD_SIZE while running tests in specific cluster nodes to
# deal with a bug in transformers library. Trainer initialization in
# get_dummy_spec_decoding_heads() function fails if WORLD_SIZE is unset.
# Preemptively skip tests if WORLD_SIZE is unset.
if os.environ.get("WORLD_SIZE") is None:
pytest.skip(
"[test_with_dummy_medusa] Skipping test due to missing WORLD_SIZE env variable."
)
print("Creating dummy Medusa heads...")
get_dummy_spec_decoding_heads(hf_model_dir=hf_model_root,
save_dir=llm_venv.get_working_directory(),
mode='medusa',
num_heads=num_medusa_heads)
print("Converting to TRTLLM checkpoints...")
model_name = model_type + "_medusa"
converted_model_path = os.path.join(cmodel_dir, model_name)
converted_ckpt_dir = f'{converted_model_path}/{data_type}/1-gpu'
convert_cmd = [
f"{medusa_example_root}/convert_checkpoint.py", "--model_dir",
os.path.join(llm_venv.get_working_directory(), 'fp8'), "--output_dir",
converted_ckpt_dir, f"--dtype={data_type}", "--tp_size=1",
"--pp_size=1", f"--model_type={model_type}"
]
venv_check_call(llm_venv, convert_cmd)
print("Building engine...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={converted_ckpt_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
f"--max_beam_width=1",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--max_input_len=1024",
"--max_seq_len=1536",
f"--max_batch_size={batch_size}",
"--paged_kv_cache=enable",
'--speculative_decoding_mode=medusa',
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run run.py...")
run_cmd = [
f"{medusa_example_root}/../run.py",
f"--tokenizer_dir={hf_model_root}",
f"--engine_dir={engine_dir}",
"--max_output_len=100",
"--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]",
f"--temperature=1.0",
]
if use_py_session:
run_cmd.append("--use_py_session")
venv_check_call(llm_venv, run_cmd)
@pytest.mark.skip(reason="https://nvbugs/5219534")
@pytest.mark.parametrize("llama_model_root",
['llama-v2-7b-hf', 'llama-3.1-8b', 'llama-3.2-1b'],
indirect=True)
def test_llama_medusa_1gpu(llama_model_root,
medusa_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
batch_size=1,
data_type='bfloat16',
num_medusa_heads=4,
use_py_session=True):
test_with_dummy_medusa(hf_model_root=llama_model_root,
medusa_example_root=medusa_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
num_medusa_heads=num_medusa_heads,
use_py_session=use_py_session,
model_type='llama')
@pytest.mark.skip(reason="https://nvbugs/5219534")
@pytest.mark.parametrize("code_llama_model_root", ['CodeLlama-7b-Instruct'],
indirect=True)
def test_codellama_medusa_1gpu(code_llama_model_root,
medusa_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
batch_size=1,
data_type='bfloat16',
num_medusa_heads=4,
use_py_session=True):
test_with_dummy_medusa(hf_model_root=code_llama_model_root,
medusa_example_root=medusa_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
num_medusa_heads=num_medusa_heads,
use_py_session=use_py_session,
model_type='llama')
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
indirect=True)
def test_mistral_medusa_1gpu(llm_mistral_model_root,
medusa_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
batch_size=1,
data_type='bfloat16',
num_medusa_heads=4,
use_py_session=True):
test_with_dummy_medusa(hf_model_root=llm_mistral_model_root,
medusa_example_root=medusa_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
num_medusa_heads=num_medusa_heads,
use_py_session=use_py_session,
model_type='mistral')
@pytest.mark.parametrize("llm_qwen_model_root", [
"qwen_7b_chat", "qwen1.5_7b_chat", "qwen2_7b_instruct",
"qwen2_0.5b_instruct", "qwen2.5_1.5b_instruct"
],
indirect=True)
def test_qwen_medusa_1gpu(llm_qwen_model_root,
medusa_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
batch_size=1,
data_type='bfloat16',
num_medusa_heads=4,
use_py_session=True):
test_with_dummy_medusa(hf_model_root=llm_qwen_model_root,
medusa_example_root=medusa_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
num_medusa_heads=num_medusa_heads,
use_py_session=use_py_session,
model_type='qwen')
@pytest.mark.parametrize("llm_phi_model_root", [
"phi-2", "Phi-3-mini-128k-instruct", "Phi-3-small-128k-instruct",
"Phi-3.5-mini-instruct", "Phi-4-mini-instruct"
],
indirect=True)
def test_phi_medusa_1gpu(llm_phi_model_root,
medusa_example_root,
llm_datasets_root,
llm_rouge_root,
llm_venv,
cmodel_dir,
engine_dir,
batch_size=1,
data_type='bfloat16',
num_medusa_heads=4,
use_py_session=True):
test_with_dummy_medusa(hf_model_root=llm_phi_model_root,
medusa_example_root=medusa_example_root,
llm_venv=llm_venv,
cmodel_dir=cmodel_dir,
engine_dir=engine_dir,
batch_size=batch_size,
data_type=data_type,
num_medusa_heads=num_medusa_heads,
use_py_session=use_py_session,
model_type='phi')