TensorRT-LLMs/tests/integration/defs/examples/test_qwenvl.py
xinhe-nv 476d7003f8
test: [CI] Add failed cases into waives.txt (#3777)
* update waive list

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>

* update waives.txt

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>

---------

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>
2025-04-24 09:36:05 +08:00

117 lines
3.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module test_qwen test qwenvl examples."""
import json
import os
import re
import pytest
from defs.common import venv_check_call, venv_check_output
from defs.trt_test_alternative import check_call
@pytest.fixture(scope="module")
def qwenvl_example_root(llm_root, llm_venv):
"Get qwenvl example root"
example_root = os.path.join(llm_root, "examples", "models", "core",
"qwenvl")
llm_venv.run_cmd([
"-m", "pip", "install", "-r",
os.path.join(example_root, "requirements.txt")
])
return example_root
@pytest.mark.parametrize("llm_qwen_model_root", ["qwen-vl-chat"], indirect=True)
def test_llm_qwenvl_single_gpu_summary(qwenvl_example_root, llm_qwen_model_root,
llm_venv, engine_dir):
"Build & run qwenvl on 1 gpu."
workspace = llm_venv.get_working_directory()
print("Generate vit onnx file and engine...")
plan_file = f"{workspace}/plan/visual_encoder/visual_encoder_fp16.plan"
onnx_file = f"{workspace}/visual_encoder/visual_encoder.onnx"
image = f"{qwenvl_example_root}/pics/demo.jpeg"
vit_cmd = [
f"{qwenvl_example_root}/vit_onnx_trt.py",
f"--pretrained_model_path={llm_qwen_model_root}",
f"--planFile={plan_file}",
f"--onnxFile={onnx_file}",
f"--image_url={image}",
]
venv_check_call(llm_venv, vit_cmd)
print("Quantize weight...")
convert_cmd = [
f"{qwenvl_example_root}/../qwen/convert_checkpoint.py",
f"--model_dir={llm_qwen_model_root}",
f"--output_dir={workspace}/Qwen-VL-Chat",
f"--dtype=float16",
]
venv_check_call(llm_venv, convert_cmd)
print("Build TRT-LLM engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={workspace}/Qwen-VL-Chat",
f"--gemm_plugin=float16",
f"--gpt_attention_plugin=float16",
f"--max_input_len=2048",
f"--max_seq_len=3072",
f"--max_prompt_embedding_table_size=2048",
f"--remove_input_padding=enable",
f"--max_beam_width=4",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run summary...")
image_path = json.dumps({"image": image})
run_cmd = [
f"{qwenvl_example_root}/run.py",
f"--tokenizer_dir={llm_qwen_model_root}",
f"--qwen_engine_dir={engine_dir}",
f"--vit_engine_path={workspace}/plan/visual_encoder/visual_encoder_fp16.plan",
f"--images_path={image_path}",
"--num_beams=4",
]
output = venv_check_output(llm_venv, run_cmd)
output = [line for line in output.split("\n") if "Output(beam:" in line]
print(output)
print("Verify the output...")
results = []
for item in output:
match = re.search(r"Output\(beam: \d+\): \"(.*)", item)
if match:
results.append(match.group(1))
for item in results:
# check the output if it contains key words
if ("dog" in item or "labrador" in item) and (
"sea" in item or "beach" in item) and ("woman" in item
or "girl" in item):
pass
else:
assert False, f"output is: {item}"