TensorRT-LLMs/tests/unittest/trt/model_api/test_model_quantization.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

110 lines
4.3 KiB
Python

import tempfile
from transformers import AutoTokenizer
from utils.llm_data import llm_models_root
from utils.util import force_ampere, skip_no_modelopt, skip_pre_ada
import tensorrt_llm
from tensorrt_llm.builder import BuildConfig, build
from tensorrt_llm.executor import GenerationExecutor
from tensorrt_llm.models import LLaMAForCausalLM
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
from tensorrt_llm.sampling_params import SamplingParams
tensorrt_llm.logger.set_level('info')
batch_input_text = [
"Born in north-east France, Soyer trained as a",
"What is large language model?"
]
@force_ampere
@skip_no_modelopt
def test_int4_awq_quantization():
max_batch_size, max_isl, max_osl = 8, 256, 256
hf_model_dir = str(llm_models_root() / "llama-models/llama-7b-hf")
cnn_dailymail_path = str(llm_models_root() / "datasets/cnn_dailymail")
checkpoint_dir = tempfile.TemporaryDirectory("llama-checkpoint").name
quant_config = QuantConfig(QuantAlgo.W4A16_AWQ)
LLaMAForCausalLM.quantize(hf_model_dir,
checkpoint_dir,
quant_config=quant_config,
calib_dataset=cnn_dailymail_path,
calib_batches=32,
calib_batch_size=32)
llama = LLaMAForCausalLM.from_checkpoint(checkpoint_dir)
engine = build(
llama,
BuildConfig(
max_batch_size=max_batch_size,
max_input_len=max_isl,
max_seq_len=max_osl + max_isl,
max_num_tokens=max_batch_size * max_isl,
))
engine_dir = "llama-awq-quantized"
engine_temp = tempfile.TemporaryDirectory(engine_dir)
engine_dir = engine_temp.name
engine.save(engine_dir)
tokenizer = AutoTokenizer.from_pretrained(hf_model_dir)
with GenerationExecutor.create(engine_dir) as executor:
batch_input_ids = [tokenizer.encode(inp) for inp in batch_input_text]
outputs = executor.generate(
batch_input_ids, sampling_params=SamplingParams(max_tokens=10))
for idx, output in enumerate(outputs):
print(f"Input: {batch_input_text[idx]}")
output_text = tokenizer.decode(output.outputs[0].token_ids)
print(f'Output: {output_text}')
# TODO: TRTLLM-185, check the score when the test infra is ready, hard coded value is not stable, cause flaky tests in L0
@skip_pre_ada
@skip_no_modelopt
def test_fp8_quantization():
max_batch_size, max_isl, max_osl = 8, 256, 256
hf_model_dir = str(llm_models_root() / "llama-models/llama-7b-hf")
cnn_dailymail_path = str(llm_models_root() / "datasets/cnn_dailymail")
checkpoint_dir = tempfile.TemporaryDirectory("llama-checkpoint").name
quant_config = QuantConfig(QuantAlgo.FP8)
LLaMAForCausalLM.quantize(hf_model_dir,
checkpoint_dir,
quant_config=quant_config,
calib_dataset=cnn_dailymail_path,
calib_batches=32)
llama = LLaMAForCausalLM.from_checkpoint(checkpoint_dir)
engine = build(
llama,
BuildConfig(max_batch_size=max_batch_size,
max_input_len=max_isl,
max_seq_len=max_osl + max_isl,
max_num_tokens=max_batch_size * max_isl,
strongly_typed=True))
engine_dir = "llama-fp8-quantized"
engine_temp = tempfile.TemporaryDirectory(engine_dir)
engine_dir = engine_temp.name
engine.save(engine_dir)
tokenizer = AutoTokenizer.from_pretrained(hf_model_dir)
with GenerationExecutor.create(engine_dir) as executor:
batch_input_ids = [tokenizer.encode(inp) for inp in batch_input_text]
outputs = executor.generate(
batch_input_ids, sampling_params=SamplingParams(max_tokens=10))
for idx, output in enumerate(outputs):
print(f"Input: {batch_input_text[idx]}")
output_text = tokenizer.decode(output.outputs[0].token_ids)
print(f'Output: {output_text}')
# TODO: TRTLLM-185, check the score when the test infra is ready, hard coded value is not stable, cause flaky tests in L0
if __name__ == "__main__":
test_int4_awq_quantization()
test_fp8_quantization()