TensorRT-LLMs/cpp/tests/resources/scripts/build_gptj_engines.py
Kaiyu Xie dfbcb543ce
doc: fix path after examples migration (#3814)
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2025-04-24 02:36:45 +08:00

192 lines
6.9 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import os as _os
import pathlib as _pl
import platform as _pf
import sys as _sys
import typing as _tp
from build_engines_utils import init_model_spec_module, run_command, wincopy
init_model_spec_module()
import model_spec
import tensorrt_llm.bindings as _tb
def get_ckpt_without_quatization(model_dir, output_dir):
build_args = [
_sys.executable, "examples/models/contrib/gpt/convert_checkpoint.py"
] + [
'--model_dir={}'.format(model_dir),
'--output_dir={}'.format(output_dir),
]
run_command(build_args)
def get_ckpt_with_modelopt_quant(model_dir, output_dir, model_cache):
build_args = [_sys.executable, "examples/quantization/quantize.py"] + [
'--model_dir={}'.format(model_dir),
'--output_dir={}'.format(output_dir), '--qformat=fp8',
'--kv_cache_dtype=fp8',
f'--calib_dataset={model_cache}/datasets/cnn_dailymail'
]
run_command(build_args)
def build_engine(checkpoint_dir: _pl.Path, engine_dir: _pl.Path, *args):
build_args = ["trtllm-build"] + (
['--checkpoint_dir', str(checkpoint_dir)] if checkpoint_dir else []) + [
'--output_dir',
str(engine_dir),
'--logits_dtype=float16',
'--gemm_plugin=float16',
'--max_batch_size=32',
'--max_input_len=40',
'--max_seq_len=60',
'--max_beam_width=2',
'--log_level=error',
] + list(args)
run_command(build_args)
def build_engines(model_cache: _tp.Optional[str] = None, only_fp8=False):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'gpt-j-6b'
# Clone or update the model directory without lfs
hf_dir = models_dir / model_name
if hf_dir.exists():
assert hf_dir.is_dir()
run_command(["git", "pull"], cwd=hf_dir)
else:
if _pf.system() == "Windows":
url_prefix = ""
else:
url_prefix = "file://"
model_url = url_prefix + str(
_pl.Path(model_cache) / model_name
) if model_cache else "https://huggingface.co/EleutherAI/gpt-j-6b"
run_command([
"git", "clone", model_url, "--single-branch", "--no-local",
model_name
],
cwd=hf_dir.parent,
env={
**_os.environ, "GIT_LFS_SKIP_SMUDGE": "1"
})
assert (hf_dir.is_dir())
# Download the model file
model_file_name = "pytorch_model.bin"
if model_cache:
if _pf.system() == "Windows":
wincopy(source=str(
_pl.Path(model_cache) / model_name / model_file_name),
dest=model_file_name,
isdir=False,
cwd=hf_dir)
else:
run_command([
"rsync", "-rlptD",
str(_pl.Path(model_cache) / model_name / model_file_name), "."
],
cwd=hf_dir)
else:
run_command(["git", "lfs", "pull", "--include", model_file_name],
cwd=hf_dir)
assert ((hf_dir / model_file_name).is_file())
engine_dir = models_dir / 'rt_engine' / model_name
# TODO add Tensor and Pipeline parallelism to GPT-J
tp_size = 1
pp_size = 1
cp_size = 1
tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu"
input_file = 'input_tokens.npy'
if only_fp8:
# with ifb, new plugin
print(
"\nBuilding fp8-plugin engine using gpt_attention_plugin with inflight-batching, packed"
)
# TODO: use dummy scales atm; to re-enable when data is uploaded to the model cache
# quantized_fp8_model_arg = '--quantized_fp8_model_path=' + \
# str(_pl.Path(model_cache) / 'fp8-quantized-modelopt' / 'gptj_tp1_rank0.npz')
fp8_ckpt_path = engine_dir / 'fp8' / tp_pp_cp_dir
get_ckpt_with_modelopt_quant(hf_dir, fp8_ckpt_path, model_cache)
model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.FP8)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
build_engine(
fp8_ckpt_path,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--gpt_attention_plugin=float16',
'--paged_kv_cache=enable',
'--remove_input_padding=enable',
'--use_paged_context_fmha=enable',
)
else:
fp16_ckpt_path = engine_dir / 'fp16' / tp_pp_cp_dir
get_ckpt_without_quatization(hf_dir, fp16_ckpt_path)
print("\nBuilding fp16-plugin engine")
model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.CONTINUOUS)
build_engine(
fp16_ckpt_path,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--gpt_attention_plugin=float16', '--paged_kv_cache=disable',
'--remove_input_padding=disable', "--context_fmha=disable")
print("\nBuilding fp16-plugin-packed engine")
model_spec_obj.use_packed_input()
build_engine(
fp16_ckpt_path,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--gpt_attention_plugin=float16', '--paged_kv_cache=disable',
'--remove_input_padding=enable', "--context_fmha=disable")
print("\nBuilding fp16-plugin-packed-paged engine")
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
build_engine(
fp16_ckpt_path,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--gpt_attention_plugin=float16', '--paged_kv_cache=enable',
'--remove_input_padding=enable', "--context_fmha=disable")
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument(
"--only_fp8",
action="store_true",
help="Build engines for only FP8 tests. Implemented for H100 runners.")
build_engines(**vars(parser.parse_args()))