mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
549 lines
22 KiB
Python
549 lines
22 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional, OrderedDict, Union
|
|
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
import torch
|
|
import transformers
|
|
|
|
from tensorrt_llm.models.modeling_utils import PretrainedModel
|
|
|
|
from ..._common import default_net
|
|
from ...functional import (ACT2FN, Tensor, concat, constant, cumsum, expand,
|
|
index_select, select, shape, slice, unsqueeze)
|
|
from ...layers import MLP, BertAttention, Embedding, LayerNorm, Linear
|
|
from ...mapping import Mapping
|
|
from ...module import Module, ModuleList
|
|
from ..modeling_utils import QuantConfig
|
|
from .config import BERTConfig
|
|
from .convert import (load_hf_bert_base, load_hf_bert_cls, load_hf_bert_qa,
|
|
load_weights_from_hf_model)
|
|
|
|
|
|
class BertEmbedding(Module):
|
|
|
|
def __init__(self,
|
|
vocab_size,
|
|
hidden_size,
|
|
max_position_embeddings,
|
|
type_vocab_size,
|
|
dtype=None):
|
|
super().__init__()
|
|
self.vocab_embedding = Embedding(vocab_size, hidden_size, dtype=dtype)
|
|
self.position_embedding = Embedding(max_position_embeddings,
|
|
hidden_size,
|
|
dtype=dtype)
|
|
self.token_embedding = Embedding(type_vocab_size,
|
|
hidden_size,
|
|
dtype=dtype)
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.embedding_ln = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
|
|
|
|
def forward(self, input_ids, position_ids, token_type_ids):
|
|
x = self.vocab_embedding(input_ids)
|
|
x = x + self.position_embedding(position_ids)
|
|
x = x + self.token_embedding(token_type_ids)
|
|
x = self.embedding_ln(x)
|
|
return x
|
|
|
|
|
|
class BertEncoderLayer(Module):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
max_position_embeddings,
|
|
hidden_act='relu',
|
|
tp_group=None,
|
|
tp_size=1,
|
|
dtype=None):
|
|
super().__init__()
|
|
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
|
|
dtype=dtype)
|
|
|
|
self.attention = BertAttention(
|
|
hidden_size=hidden_size,
|
|
num_attention_heads=num_attention_heads,
|
|
max_position_embeddings=max_position_embeddings,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
dtype=dtype)
|
|
self.mlp = MLP(hidden_size=hidden_size,
|
|
ffn_hidden_size=hidden_size * 4,
|
|
hidden_act=hidden_act,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
dtype=dtype)
|
|
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
|
|
dtype=dtype)
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
input_lengths=None,
|
|
max_input_length=None):
|
|
residual = hidden_states
|
|
|
|
attention_output = self.attention(hidden_states,
|
|
attention_mask=attention_mask,
|
|
input_lengths=input_lengths,
|
|
max_input_length=max_input_length)
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class BertBase(PretrainedModel):
|
|
'''
|
|
Base class that provides from_huggingface() and prepare_inputs() methods
|
|
'''
|
|
config_class = BERTConfig
|
|
|
|
def __init__(self, config: BERTConfig):
|
|
super().__init__(config)
|
|
|
|
@classmethod
|
|
def load_hf_bert(cls, model_dir: str, load_model_on_cpu: bool,
|
|
dtype: torch.dtype):
|
|
"""
|
|
Use as the abstractmethod, load corresponding HF model.
|
|
Subclass must implement this method!
|
|
"""
|
|
|
|
assert cls.__name__ != "BertBase", f"Never call from BertBase class!"
|
|
|
|
if cls.__name__ == "BertModel":
|
|
return load_hf_bert_base(model_dir, load_model_on_cpu, dtype)
|
|
elif cls.__name__ == "BertForQuestionAnswering":
|
|
return load_hf_bert_qa(model_dir, load_model_on_cpu, dtype)
|
|
elif cls.__name__ == "BertForSequenceClassification":
|
|
return load_hf_bert_cls(model_dir, load_model_on_cpu, dtype)
|
|
else:
|
|
assert False, f"Unknown class {cls.__name__}!"
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'float16',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
"""
|
|
Create a BertModel object from give parameters
|
|
"""
|
|
import transformers
|
|
|
|
assert hf_model_or_dir is not None
|
|
use_preloading = isinstance(hf_model_or_dir,
|
|
transformers.PreTrainedModel)
|
|
if use_preloading:
|
|
hf_model = hf_model_or_dir
|
|
hf_config_or_dir = hf_model.config
|
|
else:
|
|
hf_model_dir = hf_model_or_dir
|
|
hf_config_or_dir = hf_model_or_dir
|
|
|
|
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
|
|
tllm_config = BERTConfig.from_hugging_face(
|
|
hf_config_or_dir=hf_config_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
#NOTE: override architecture info
|
|
RobertaCls_mapping = {
|
|
"BertModel": "RobertaModel",
|
|
"BertForQuestionAnswering": "RobertaForQuestionAnswering",
|
|
"BertForSequenceClassification": "RobertaForSequenceClassification",
|
|
}
|
|
if tllm_config.is_roberta:
|
|
setattr(tllm_config, 'architecture',
|
|
RobertaCls_mapping[cls.__name__])
|
|
else:
|
|
setattr(tllm_config, 'architecture', cls.__name__)
|
|
|
|
torch_dtype = torch.float16 if dtype == 'float16' else torch.float32
|
|
if not use_preloading:
|
|
hf_model = cls.load_hf_bert(model_dir=hf_model_dir,
|
|
load_model_on_cpu=load_model_on_cpu,
|
|
dtype=torch_dtype)
|
|
weights = load_weights_from_hf_model(hf_model=hf_model,
|
|
config=tllm_config)
|
|
model = cls(tllm_config)
|
|
model.load(weights)
|
|
|
|
return model
|
|
|
|
# Override the PretrainedModel's meothd, can unify in the future.
|
|
def prepare_inputs(self, max_batch_size, max_input_len, **kwargs):
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
# opt_shape is set to half of max batch_size and seq_len by default
|
|
# tune this according to real data distribution
|
|
bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
|
|
inlen_range = [1, (max_input_len + 1) // 2, max_input_len]
|
|
num_tokens_range = [
|
|
1,
|
|
(max_input_len * max_batch_size + 1) // 2,
|
|
max_input_len * max_batch_size,
|
|
]
|
|
if not remove_input_padding:
|
|
input_ids = Tensor(
|
|
name='input_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1],
|
|
dim_range=OrderedDict([('batch_size', [bs_range]),
|
|
('input_len', [inlen_range])]),
|
|
)
|
|
# also called segment_ids
|
|
token_type_ids = Tensor(
|
|
name='token_type_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1],
|
|
dim_range=OrderedDict([('batch_size', [bs_range]),
|
|
('input_len', [inlen_range])]),
|
|
)
|
|
else:
|
|
input_ids = Tensor(
|
|
name="input_ids",
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([("num_tokens", [num_tokens_range])]),
|
|
)
|
|
token_type_ids = Tensor(
|
|
name='token_type_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('num_tokens', [num_tokens_range])]),
|
|
)
|
|
position_ids = Tensor(
|
|
name='position_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('num_tokens', [num_tokens_range])]),
|
|
)
|
|
max_input_length = Tensor(
|
|
name="max_input_length",
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([("max_input_length", [inlen_range])]),
|
|
)
|
|
input_lengths = Tensor(name='input_lengths',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size', [bs_range])
|
|
]))
|
|
|
|
inputs = {
|
|
'input_ids': input_ids,
|
|
'input_lengths': input_lengths,
|
|
'token_type_ids': token_type_ids,
|
|
}
|
|
|
|
if remove_input_padding:
|
|
inputs['position_ids'] = position_ids
|
|
inputs['max_input_length'] = max_input_length
|
|
|
|
return inputs
|
|
|
|
|
|
class BertModel(BertBase):
|
|
|
|
def __init__(self, config: BERTConfig):
|
|
super().__init__(config)
|
|
|
|
self.config = config
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.padding_idx = config.pad_token_id
|
|
self.is_roberta = config.is_roberta
|
|
self.embedding = BertEmbedding(
|
|
vocab_size=config.vocab_size,
|
|
hidden_size=config.hidden_size,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
type_vocab_size=config.type_vocab_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = ModuleList([
|
|
BertEncoderLayer(
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
hidden_act=config.hidden_act,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
dtype=config.dtype) for _ in range(config.num_hidden_layers)
|
|
])
|
|
|
|
def forward(self,
|
|
input_ids=None,
|
|
input_lengths=None,
|
|
position_ids=None,
|
|
token_type_ids=None,
|
|
hidden_states=None,
|
|
max_input_length=None):
|
|
# remove_input_padding requires these fields as explicit input
|
|
mask = None
|
|
if not default_net().plugin_config.remove_input_padding:
|
|
seq_len_2d = concat([1, shape(input_ids, 1)])
|
|
|
|
# create position ids
|
|
position_ids_buffer = constant(
|
|
np.expand_dims(
|
|
np.arange(self.max_position_embeddings).astype(np.int32),
|
|
0))
|
|
tmp_position_ids = slice(position_ids_buffer,
|
|
starts=[0, 0],
|
|
sizes=seq_len_2d)
|
|
tmp_position_ids = expand(tmp_position_ids, shape(input_ids)) #BxL
|
|
tmp_input_lengths = unsqueeze(input_lengths, 1) #Bx1
|
|
tmp_input_lengths = expand(tmp_input_lengths,
|
|
shape(input_ids)) #BxL
|
|
mask = tmp_position_ids < tmp_input_lengths # BxL
|
|
mask = mask.cast('int32')
|
|
|
|
if position_ids is None:
|
|
if self.is_roberta:
|
|
# see create_position_ids_from_input_ids() in https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py
|
|
position_ids = (tmp_position_ids + 1) * mask
|
|
position_ids = position_ids + self.padding_idx
|
|
else:
|
|
position_ids = slice(position_ids_buffer,
|
|
starts=[0, 0],
|
|
sizes=seq_len_2d)
|
|
position_ids = expand(position_ids, shape(input_ids))
|
|
|
|
# create token_type_ids
|
|
if token_type_ids is None:
|
|
token_type_ids_buffer = constant(
|
|
np.expand_dims(
|
|
np.zeros(self.max_position_embeddings).astype(np.int32),
|
|
0))
|
|
token_type_ids = slice(token_type_ids_buffer,
|
|
starts=[0, 0],
|
|
sizes=seq_len_2d)
|
|
token_type_ids = expand(token_type_ids, shape(input_ids))
|
|
|
|
hidden_states = self.embedding(input_ids, position_ids, token_type_ids)
|
|
self.register_network_output('embedding_output', hidden_states)
|
|
|
|
for idx, layer in enumerate(self.layers):
|
|
hidden_states = layer(hidden_states=hidden_states,
|
|
input_lengths=input_lengths,
|
|
attention_mask=mask,
|
|
max_input_length=max_input_length)
|
|
# keep the last layer output name as hidden_states
|
|
if ((idx == (self.config.num_hidden_layers - 1)) and
|
|
(self.config.architecture in ["BertModel", "RobertaModel"])):
|
|
hidden_states.mark_output('hidden_states', self.config.dtype)
|
|
else:
|
|
self.register_network_output(f"layer_{idx}_output",
|
|
hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
RobertaModel = BertModel
|
|
|
|
|
|
class BertForQuestionAnswering(BertBase):
|
|
|
|
def __init__(self, config: BERTConfig):
|
|
super().__init__(config)
|
|
self.bert = BertModel(config)
|
|
self.num_labels = config.num_labels
|
|
self.qa_outputs = Linear(config.hidden_size,
|
|
config.num_labels,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids=None,
|
|
input_lengths=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
hidden_states=None,
|
|
max_input_length=None):
|
|
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
if remove_input_padding:
|
|
assert token_type_ids is not None and \
|
|
position_ids is not None and \
|
|
max_input_length is not None, \
|
|
"token_type_ids, position_ids, max_input_length is required " \
|
|
"in remove_input_padding mode"
|
|
hidden_states = self.bert.forward(input_ids=input_ids,
|
|
input_lengths=input_lengths,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
hidden_states=hidden_states,
|
|
max_input_length=max_input_length)
|
|
|
|
logits = self.qa_outputs(hidden_states)
|
|
logits.mark_output('logits', self.config.logits_dtype)
|
|
|
|
return logits
|
|
|
|
|
|
RobertaForQuestionAnswering = BertForQuestionAnswering
|
|
|
|
|
|
class BertPooler(Module):
|
|
|
|
def __init__(self, hidden_size, dtype):
|
|
super().__init__()
|
|
self.dense = Linear(hidden_size, hidden_size, dtype=dtype)
|
|
self.activation = ACT2FN['tanh']
|
|
|
|
def forward(self, hidden_states, input_lengths, remove_input_padding):
|
|
if not remove_input_padding:
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
first_token_tensor = select(hidden_states, 1, 0)
|
|
else:
|
|
# when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size]
|
|
# We can take the first token of each sequence according to input_lengths,
|
|
# and then do pooling similar to padding mode.
|
|
# For example, if input_lengths is [8, 5, 6], then the indices of first tokens
|
|
# should be [0, 8, 13]
|
|
first_token_indices = cumsum(
|
|
concat([
|
|
0,
|
|
slice(input_lengths,
|
|
starts=[0],
|
|
sizes=(shape(input_lengths) -
|
|
constant(np.array([1], dtype=np.int32))))
|
|
]), 0)
|
|
first_token_tensor = index_select(hidden_states, 0,
|
|
first_token_indices)
|
|
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
|
|
class RobertaClassificationHead(Module):
|
|
"""Head for sentence-level classification tasks."""
|
|
|
|
def __init__(self, hidden_size, dtype, num_labels):
|
|
super().__init__()
|
|
self.dense = Linear(hidden_size, hidden_size, dtype=dtype)
|
|
self.out_proj = Linear(hidden_size, num_labels)
|
|
|
|
def forward(self, hidden_states, input_lengths, remove_input_padding):
|
|
|
|
if not remove_input_padding:
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
first_token_tensor = select(hidden_states, 1, 0)
|
|
else:
|
|
# when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size]
|
|
# We can take the first token of each sequence according to input_lengths,
|
|
# and then do pooling similar to padding mode.
|
|
# For example, if input_lengths is [8, 5, 6], then the indices of first tokens
|
|
# should be [0, 8, 13]
|
|
first_token_indices = cumsum(
|
|
concat([
|
|
0,
|
|
slice(input_lengths,
|
|
starts=[0],
|
|
sizes=(shape(input_lengths) -
|
|
constant(np.array([1], dtype=np.int32))))
|
|
]), 0)
|
|
first_token_tensor = index_select(hidden_states, 0,
|
|
first_token_indices)
|
|
|
|
x = self.dense(first_token_tensor)
|
|
x = ACT2FN['tanh'](x)
|
|
x = self.out_proj(x)
|
|
return x
|
|
|
|
|
|
class BertForSequenceClassification(BertBase):
|
|
|
|
def __init__(self, config: BERTConfig):
|
|
super().__init__(config)
|
|
|
|
self.config = config
|
|
self.is_roberta = config.is_roberta
|
|
self.bert = BertModel(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
if not config.is_roberta:
|
|
self.pooler = BertPooler(hidden_size=config.hidden_size,
|
|
dtype=config.dtype)
|
|
self.classifier = Linear(config.hidden_size,
|
|
config.num_labels,
|
|
dtype=config.dtype)
|
|
else:
|
|
self.classifier = RobertaClassificationHead(
|
|
hidden_size=config.hidden_size,
|
|
num_labels=config.num_labels,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids,
|
|
input_lengths,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
hidden_states=None,
|
|
max_input_length=None):
|
|
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
|
|
# required as explicit input in remove_input_padding mode
|
|
# see examples/models/core/bert/run_remove_input_padding.py for how to create them from input_ids and input_lengths
|
|
if remove_input_padding:
|
|
assert token_type_ids is not None and \
|
|
position_ids is not None and \
|
|
max_input_length is not None, \
|
|
"token_type_ids, position_ids, max_input_length is required " \
|
|
"in remove_input_padding mode"
|
|
|
|
hidden_states = self.bert.forward(input_ids=input_ids,
|
|
input_lengths=input_lengths,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
hidden_states=hidden_states,
|
|
max_input_length=max_input_length)
|
|
|
|
if not self.is_roberta:
|
|
pooled_output = self.pooler(
|
|
hidden_states=hidden_states,
|
|
input_lengths=input_lengths,
|
|
remove_input_padding=remove_input_padding)
|
|
logits = self.classifier(pooled_output)
|
|
else:
|
|
logits = self.classifier(hidden_states=hidden_states,
|
|
input_lengths=input_lengths,
|
|
remove_input_padding=remove_input_padding)
|
|
|
|
logits.mark_output('logits', self.config.logits_dtype)
|
|
return logits
|
|
|
|
|
|
RobertaForSequenceClassification = BertForSequenceClassification
|