TensorRT-LLMs/benchmarks/cpp/utils/utils.py
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

89 lines
2.7 KiB
Python

import json
import math
import random
from typing import List
import numpy as np
from pydantic import BaseModel
class Sample(BaseModel):
input_ids: List[int]
output_len: int
delay: float
class Workload(BaseModel):
metadata: dict
samples: List[Sample] = []
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.setup_workload_name()
def setup_workload_name(self):
# Keys to ignore
ignore_keys = ['tokenizer']
# Create a string by concatenating keys and values with "__"
workload_name = '__'.join(f'{key}:{value}'
for key, value in self.metadata.items()
if key not in ignore_keys)
self.metadata.setdefault('workload_name', workload_name)
def dataset_dump(input_ids, output_lens, delays, metadata, output_file):
samples = []
for i in range(len(input_ids)):
samples.append(
Sample(input_ids=input_ids[i],
output_len=output_lens[i],
delay=delays[i]))
workload = Workload(metadata=metadata, samples=samples)
with open(output_file, 'w') as f:
json.dump(workload.dict(), f)
def get_req_time_interval(req_rate):
if req_rate == -1:
mean_time_bet_reqs = 0
else:
mean_time_bet_reqs = 1.0 / req_rate
return mean_time_bet_reqs
def get_list_of_delays(delay_dist, mean_time_bet_reqs, num_reqs, random_seed):
if delay_dist == "constant":
delays = [mean_time_bet_reqs] * num_reqs
elif delay_dist == "exponential_dist":
delays = get_exponential_dist_delays(mean_time_bet_reqs, num_reqs,
random_seed)
return delays
def get_exponential_dist_delays(mean_time_bet_reqs, num_reqs, random_seed):
# set seed for determinism
np.random.seed(random_seed)
return np.random.exponential(mean_time_bet_reqs, num_reqs).tolist()
def get_norm_dist_tokens(mean, stdev, num_reqs, random_seed):
# set seed for determinism
np.random.seed(random_seed)
numbers_list = np.random.normal(loc=mean, scale=stdev,
size=num_reqs).tolist()
return [max(1, math.ceil(x)) for x in numbers_list]
def gen_random_tokens(ip_lens, tokenizer, random_seed):
input_ids = []
random.seed(random_seed)
for ip_len in ip_lens:
start_ids = random.sample(range(0, tokenizer.vocab_size), ip_len)
# Make sure it does not contain EOS token
while set(tokenizer.encode(tokenizer.eos_token)).issubset(start_ids):
start_ids = random.sample(range(0, tokenizer.vocab_size), ip_len)
input_ids.append(start_ids)
return input_ids