mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: erenup <ping.nie@pku.edu.cn> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
89 lines
2.7 KiB
Python
89 lines
2.7 KiB
Python
import json
|
|
import math
|
|
import random
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class Sample(BaseModel):
|
|
input_ids: List[int]
|
|
output_len: int
|
|
delay: float
|
|
|
|
|
|
class Workload(BaseModel):
|
|
metadata: dict
|
|
samples: List[Sample] = []
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.setup_workload_name()
|
|
|
|
def setup_workload_name(self):
|
|
# Keys to ignore
|
|
ignore_keys = ['tokenizer']
|
|
# Create a string by concatenating keys and values with "__"
|
|
workload_name = '__'.join(f'{key}:{value}'
|
|
for key, value in self.metadata.items()
|
|
if key not in ignore_keys)
|
|
self.metadata.setdefault('workload_name', workload_name)
|
|
|
|
|
|
def dataset_dump(input_ids, output_lens, delays, metadata, output_file):
|
|
samples = []
|
|
for i in range(len(input_ids)):
|
|
samples.append(
|
|
Sample(input_ids=input_ids[i],
|
|
output_len=output_lens[i],
|
|
delay=delays[i]))
|
|
workload = Workload(metadata=metadata, samples=samples)
|
|
with open(output_file, 'w') as f:
|
|
json.dump(workload.dict(), f)
|
|
|
|
|
|
def get_req_time_interval(req_rate):
|
|
if req_rate == -1:
|
|
mean_time_bet_reqs = 0
|
|
else:
|
|
mean_time_bet_reqs = 1.0 / req_rate
|
|
return mean_time_bet_reqs
|
|
|
|
|
|
def get_list_of_delays(delay_dist, mean_time_bet_reqs, num_reqs, random_seed):
|
|
if delay_dist == "constant":
|
|
delays = [mean_time_bet_reqs] * num_reqs
|
|
elif delay_dist == "exponential_dist":
|
|
delays = get_exponential_dist_delays(mean_time_bet_reqs, num_reqs,
|
|
random_seed)
|
|
|
|
return delays
|
|
|
|
|
|
def get_exponential_dist_delays(mean_time_bet_reqs, num_reqs, random_seed):
|
|
# set seed for determinism
|
|
np.random.seed(random_seed)
|
|
return np.random.exponential(mean_time_bet_reqs, num_reqs).tolist()
|
|
|
|
|
|
def get_norm_dist_tokens(mean, stdev, num_reqs, random_seed):
|
|
# set seed for determinism
|
|
np.random.seed(random_seed)
|
|
numbers_list = np.random.normal(loc=mean, scale=stdev,
|
|
size=num_reqs).tolist()
|
|
return [max(1, math.ceil(x)) for x in numbers_list]
|
|
|
|
|
|
def gen_random_tokens(ip_lens, tokenizer, random_seed):
|
|
input_ids = []
|
|
random.seed(random_seed)
|
|
for ip_len in ip_lens:
|
|
start_ids = random.sample(range(0, tokenizer.vocab_size), ip_len)
|
|
# Make sure it does not contain EOS token
|
|
while set(tokenizer.encode(tokenizer.eos_token)).issubset(start_ids):
|
|
start_ids = random.sample(range(0, tokenizer.vocab_size), ip_len)
|
|
input_ids.append(start_ids)
|
|
|
|
return input_ids
|