TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/gptDecoder.h
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

122 lines
4.3 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cudaAllocator.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/decodingInput.h"
#include "tensorrt_llm/runtime/decodingOutput.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include <curand_kernel.h>
#include <cstdint>
#include <memory>
#include <NvInferRuntime.h>
namespace tensorrt_llm
{
namespace layers
{
// Forward declaration
template <typename T>
class DynamicDecodeLayer;
} // namespace layers
namespace runtime
{
class IGptDecoder
{
public:
virtual ~IGptDecoder() = default;
virtual void setup(SamplingConfig const& samplingConfig, size_t batchSize, SizeType maxSequenceLength) = 0;
virtual bool forward(DecodingOutput& output, DecodingInput const& input) = 0;
virtual void forwardAsync(DecodingOutput& output, DecodingInput const& input) = 0;
virtual void gatherTree(ITensor& finalOutputIds, DecodingOutput const& decodingOutput,
DecodingInput const& decodingInput, BufferManager const& manager)
= 0;
virtual const SamplingConfig& getSamplingConfig() = 0;
static void acceptDraftTokensByIds(const ITensor& targetTokenIds, const ITensor& draftTokenIds,
const ITensor& contextLengths, const ITensor& numDraftTokens, ITensor& sequenceLengths,
const ITensor& finishedVec, ITensor& finishedFinal, ITensor& finishedSum,
BufferManager::CudaStreamPtr const& stream);
static void acceptDraftTokensByLogits(ITensor& draftLogits, const ITensor& targetLogits, ITensor& draftProbs,
ITensor& targetProbs, const ITensor& numDraftTokens, ITensor& finished, SizeType vocabSize,
SizeType vocabSizePadded, bool useRandomAcceptThreshold, float randomAcceptThreshold,
curandState_t* curandState, BufferManager::CudaStreamPtr const& stream);
static std::unique_ptr<IGptDecoder> create(nvinfer1::DataType dtype, size_t maxBatchSize, size_t vocabSize,
size_t vocabSizePadded, BufferManager::CudaStreamPtr const& stream);
};
template <typename T>
class GptDecoder : public virtual IGptDecoder
{
public:
using CudaStreamPtr = BufferManager::CudaStreamPtr;
using TensorPtr = std::shared_ptr<ITensor>;
GptDecoder(size_t maxBatchSize, size_t vocabSize, size_t vocabSizePadded, CudaStreamPtr const& stream);
void setup(SamplingConfig const& samplingConfig, size_t batchSize, SizeType maxSequenceLength) override;
bool forward(DecodingOutput& output, DecodingInput const& input) override;
void forwardAsync(DecodingOutput& output, DecodingInput const& input) override;
void gatherTree(ITensor& finalOutputIds, DecodingOutput const& decodingOutput, DecodingInput const& decodingInput,
BufferManager const& manager) override;
const SamplingConfig& getSamplingConfig() override
{
return mSamplingConfig;
}
private:
BufferManager mManager;
std::shared_ptr<tensorrt_llm::layers::DynamicDecodeLayer<T>> mDynamicDecodeLayer;
TensorPtr mLogProbsTiled; // Buffer used to store the transpose of the logProbs. Needed because the kernels have
// been written to use that shape.
SamplingConfig mSamplingConfig;
};
inline std::unique_ptr<IGptDecoder> IGptDecoder::create(nvinfer1::DataType dtype, size_t maxBatchSize, size_t vocabSize,
size_t vocabSizePadded, BufferManager::CudaStreamPtr const& stream)
{
switch (dtype)
{
case nvinfer1::DataType::kFLOAT:
return std::make_unique<GptDecoder<float>>(maxBatchSize, vocabSize, vocabSizePadded, stream);
case nvinfer1::DataType::kHALF:
return std::make_unique<GptDecoder<half>>(maxBatchSize, vocabSize, vocabSizePadded, stream);
default: return nullptr;
}
}
} // namespace runtime
} // namespace tensorrt_llm