TensorRT-LLMs/cpp/tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImpl.cpp
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

58 lines
1.8 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImpl.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplPrecompiled.h"
#include <cassert>
#include <functional>
#include <memory>
namespace tensorrt_llm
{
namespace kernels
{
template <>
void DecoderXQAImpl::run(const XQAParams& xqa_params, KVLinearBuffer& kv_linear_buffer,
int2& rotary_kernel_launch_cache, const cudaStream_t& stream)
{
runWithKVLinearBuffer(xqa_params, kv_linear_buffer, rotary_kernel_launch_cache, stream);
}
template <>
void DecoderXQAImpl::run(const XQAParams& xqa_params, KVBlockArray& kv_block_array, int2& rotary_kernel_launch_cache,
const cudaStream_t& stream)
{
runWithKVBlockArray(xqa_params, kv_block_array, rotary_kernel_launch_cache, stream);
}
std::unique_ptr<DecoderXQAImpl> DecoderXQAImpl::create(DecoderXQARunner* runner, ImplType implType)
{
switch (implType)
{
case ImplType::kPrecompiled: return std::unique_ptr<DecoderXQAImpl>(new DecoderXQAImplPrecompiled(runner));
// TODO(minwei): JIT impl.
case ImplType::kJIT: return nullptr;
}
// Shouldn't reach here.
assert(false);
return nullptr;
}
} // namespace kernels
} // namespace tensorrt_llm