mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: erenup <ping.nie@pku.edu.cn> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
79 lines
2.5 KiB
C++
79 lines
2.5 KiB
C++
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <optional>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace layers
|
|
{
|
|
|
|
// Using a local lambda in beam search layers to fill buffers causes an internal compiler error on nvcc windows.
|
|
// As a workaround and to promote DRY, the fill logic is refactored into FillBuffers below.
|
|
struct FillBuffers
|
|
{
|
|
|
|
template <typename T>
|
|
void operator()(std::optional<std::vector<T>> const& optParam, T const defaultValue, std::vector<T>& hostBuffer,
|
|
T* deviceBuffer, void* deviceTmpBuffer, const int* batchSlots) const
|
|
{
|
|
using tensorrt_llm::common::cudaAutoCpy;
|
|
|
|
hostBuffer.resize(batchSize);
|
|
if (!optParam)
|
|
{
|
|
std::fill(std::begin(hostBuffer), std::end(hostBuffer), defaultValue);
|
|
}
|
|
else if (optParam->size() == 1)
|
|
{
|
|
std::fill(std::begin(hostBuffer), std::end(hostBuffer), optParam->front());
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK_WITH_INFO(optParam->size() == batchSize, "Argument vector size mismatch.");
|
|
std::copy(optParam->begin(), optParam->end(), std::begin(hostBuffer));
|
|
}
|
|
if (deviceTmpBuffer && batchSlots)
|
|
{
|
|
cudaAutoCpy(reinterpret_cast<T*>(deviceTmpBuffer), hostBuffer.data(), batchSize, stream);
|
|
tensorrt_llm::kernels::invokeScatterDecodingParams(
|
|
reinterpret_cast<T*>(deviceTmpBuffer), deviceBuffer, batchSlots, batchSize, stream);
|
|
}
|
|
else
|
|
{
|
|
cudaAutoCpy(deviceBuffer, hostBuffer.data(), batchSize, stream);
|
|
}
|
|
}
|
|
|
|
size_t batchSize;
|
|
cudaStream_t stream;
|
|
};
|
|
|
|
} // namespace layers
|
|
|
|
} // namespace tensorrt_llm
|