TensorRT-LLMs/cpp/tensorrt_llm/layers/fillBuffers.h
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

79 lines
2.5 KiB
C++

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <optional>
#include <utility>
#include <vector>
#include <cuda_runtime.h>
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
namespace tensorrt_llm
{
namespace layers
{
// Using a local lambda in beam search layers to fill buffers causes an internal compiler error on nvcc windows.
// As a workaround and to promote DRY, the fill logic is refactored into FillBuffers below.
struct FillBuffers
{
template <typename T>
void operator()(std::optional<std::vector<T>> const& optParam, T const defaultValue, std::vector<T>& hostBuffer,
T* deviceBuffer, void* deviceTmpBuffer, const int* batchSlots) const
{
using tensorrt_llm::common::cudaAutoCpy;
hostBuffer.resize(batchSize);
if (!optParam)
{
std::fill(std::begin(hostBuffer), std::end(hostBuffer), defaultValue);
}
else if (optParam->size() == 1)
{
std::fill(std::begin(hostBuffer), std::end(hostBuffer), optParam->front());
}
else
{
TLLM_CHECK_WITH_INFO(optParam->size() == batchSize, "Argument vector size mismatch.");
std::copy(optParam->begin(), optParam->end(), std::begin(hostBuffer));
}
if (deviceTmpBuffer && batchSlots)
{
cudaAutoCpy(reinterpret_cast<T*>(deviceTmpBuffer), hostBuffer.data(), batchSize, stream);
tensorrt_llm::kernels::invokeScatterDecodingParams(
reinterpret_cast<T*>(deviceTmpBuffer), deviceBuffer, batchSlots, batchSize, stream);
}
else
{
cudaAutoCpy(deviceBuffer, hostBuffer.data(), batchSize, stream);
}
}
size_t batchSize;
cudaStream_t stream;
};
} // namespace layers
} // namespace tensorrt_llm