mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: erenup <ping.nie@pku.edu.cn> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
361 lines
15 KiB
Plaintext
361 lines
15 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
|
|
#include "tensorrt_llm/layers/topPSamplingLayer.h"
|
|
|
|
#include <algorithm>
|
|
#include <float.h>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace layers
|
|
{
|
|
|
|
static __global__ void set_topp_runtime_args(int batchSize, uint32_t top_k, uint32_t* top_ks, int top_ks_size,
|
|
float top_p, float* top_ps, int top_ps_size, bool* skip_decode, float* initial_top_p_buf, float* top_p_decay_buf,
|
|
float* top_p_min_buf, const int* batch_slots)
|
|
{
|
|
/**
|
|
* @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
|
|
and top_k to top_ks, verifying value ranges of top_p_decay/top_p_min.
|
|
*
|
|
* \param batchSize
|
|
* \param top_k
|
|
* \param top_ks [batchSize]
|
|
* \param top_ks_size
|
|
* \param top_p
|
|
* \param top_ps [batchSize]
|
|
* \param top_ps_size
|
|
* \param skip_decode [batchSize]
|
|
* \param initial_top_p_buf [batchSize]
|
|
* \param top_p_decay_buf [batchSize]
|
|
* \param top_p_min_buf [batchSize]
|
|
*
|
|
*/
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (int bi = index; bi < batchSize; bi += gridDim.x * blockDim.x)
|
|
{
|
|
auto const batch_slot = batch_slots != nullptr ? batch_slots[bi] : bi;
|
|
std::uint32_t k = top_ks_size > 1 ? top_ks[batch_slot] : top_k;
|
|
float p = top_ps_size > 1 ? top_ps[batch_slot] : top_p;
|
|
if (k == 0 && p == 0.0f)
|
|
{
|
|
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
|
|
// equivalent to greedy search. So, we set the topk = 1 as an alternative
|
|
// solution.
|
|
k = 1;
|
|
}
|
|
top_ks[batch_slot] = k;
|
|
top_ps[batch_slot] = p;
|
|
skip_decode[batch_slot] = k > 0;
|
|
|
|
initial_top_p_buf[batch_slot] = top_ps[batch_slot];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::allocateBuffer(size_t batchSize)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
if (is_deterministic_)
|
|
{
|
|
invokeTopPSampling<T>(nullptr, // workspace
|
|
mSamplingWorkspaceSize, cub_temp_storage_size_,
|
|
nullptr, // output_ids
|
|
nullptr, // sequence_length
|
|
nullptr, // finished_input_buffer
|
|
nullptr, // finished_output_buffer
|
|
nullptr, // cum_log_probs
|
|
nullptr, // output_log_probs
|
|
nullptr, // log_probs
|
|
topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, mCurandStatesDevice, batchSize,
|
|
mVocabSizePadded, nullptr, 0.f, mStream, mSkipDecodeDevice, nullptr);
|
|
}
|
|
else
|
|
{
|
|
invokeAirTopPSampling<T>(nullptr, mSamplingWorkspaceSize,
|
|
nullptr, // output_ids
|
|
nullptr, // sequence_length
|
|
nullptr, // finished_input_buffer
|
|
nullptr, // finished_output_buffer
|
|
nullptr, // cum_log_probs
|
|
nullptr, // output_log_probs
|
|
nullptr, // log_probs)
|
|
mCurandStatesDevice, batchSize, mVocabSizePadded, nullptr, 0.f, mStream, air_topp_block_num_,
|
|
mSkipDecodeDevice, nullptr);
|
|
}
|
|
|
|
std::array<size_t, 11> deviceBufferSizes;
|
|
deviceBufferSizes[0] = mSamplingWorkspaceSize;
|
|
deviceBufferSizes[1] = sizeof(int32_t) * batchSize * mVocabSizePadded;
|
|
deviceBufferSizes[2] = sizeof(int32_t) * (batchSize + 1);
|
|
deviceBufferSizes[3] = sizeof(int32_t) * (batchSize + 1);
|
|
deviceBufferSizes[4] = sizeof(uint32_t) * batchSize;
|
|
deviceBufferSizes[5] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[6] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[7] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[8] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[9] = sizeof(int32_t) * batchSize;
|
|
deviceBufferSizes[10] = *std::max_element(&deviceBufferSizes[4], &deviceBufferSizes[10]);
|
|
|
|
mSamplingWorkspaceDevice = mAllocator->reMalloc(mSamplingWorkspaceDevice, deviceBufferSizes[0], true);
|
|
topp_id_vals_buf_ = mAllocator->reMalloc(topp_id_vals_buf_, deviceBufferSizes[1], false);
|
|
topp_offset_buf_ = mAllocator->reMalloc(topp_offset_buf_, deviceBufferSizes[2], false);
|
|
begin_topp_offset_buf_ = mAllocator->reMalloc(begin_topp_offset_buf_, deviceBufferSizes[3], false);
|
|
runtime_top_k_buf_ = mAllocator->reMalloc(runtime_top_k_buf_, deviceBufferSizes[4], false);
|
|
runtime_top_p_buf_ = mAllocator->reMalloc(runtime_top_p_buf_, deviceBufferSizes[5], false);
|
|
initial_top_p_buf_ = mAllocator->reMalloc(initial_top_p_buf_, deviceBufferSizes[6], false);
|
|
top_p_decay_buf_ = mAllocator->reMalloc(top_p_decay_buf_, deviceBufferSizes[7], false);
|
|
top_p_min_buf_ = mAllocator->reMalloc(top_p_min_buf_, deviceBufferSizes[8], false);
|
|
top_p_reset_ids_buf_ = mAllocator->reMalloc(top_p_reset_ids_buf_, deviceBufferSizes[9], false);
|
|
setup_workspace_buf_ = mAllocator->reMalloc(setup_workspace_buf_, deviceBufferSizes[10], false);
|
|
|
|
auto const bytesAllocated = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
|
|
TLLM_LOG_DEBUG("topPSamplingLayer allocated %d bytes on GPU", bytesAllocated);
|
|
|
|
mIsAllocateBuffer = true;
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::freeBuffer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
if (mIsAllocateBuffer)
|
|
{
|
|
mAllocator->free((void**) (&mSamplingWorkspaceDevice));
|
|
mAllocator->free((void**) (&topp_id_vals_buf_));
|
|
mAllocator->free((void**) (&topp_offset_buf_));
|
|
mAllocator->free((void**) (&begin_topp_offset_buf_));
|
|
mAllocator->free((void**) (&runtime_top_k_buf_));
|
|
mAllocator->free((void**) (&runtime_top_p_buf_));
|
|
mAllocator->free((void**) (&initial_top_p_buf_));
|
|
mAllocator->free((void**) (&top_p_decay_buf_));
|
|
mAllocator->free((void**) (&top_p_min_buf_));
|
|
mAllocator->free((void**) (&top_p_reset_ids_buf_));
|
|
mAllocator->free((void**) (&setup_workspace_buf_));
|
|
}
|
|
BaseSamplingLayer<T>::freeBuffer();
|
|
mIsAllocateBuffer = false;
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::setup(size_t const batchSize, int const* batchSlots, SetupParams const& setupParams)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
BaseSamplingLayer<T>::setupBase(batchSize, batchSlots, setupParams);
|
|
|
|
uint32_t const defaultTopK = 0;
|
|
auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector<uint32_t>{defaultTopK});
|
|
auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector<float>{});
|
|
|
|
size_t const runtimeTopKSize = runtimeTopK.size();
|
|
size_t const runtimeTopPSize = runtimeTopP.size();
|
|
|
|
float const defaultTopPDecay{1.0f};
|
|
auto decayVec = setupParams.top_p_decay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
|
|
|
|
float const defaultTopPMin{1e-6f}; // prevent topp becoming 0.0
|
|
auto topPMinVec = setupParams.top_p_min.value_or(std::vector<float>(batchSize, defaultTopPMin));
|
|
|
|
int32_t const defaultTopPResetId{-1};
|
|
auto topPResetIdsVec = setupParams.top_p_reset_ids.value_or(std::vector<int32_t>(batchSize, defaultTopPResetId));
|
|
|
|
if (runtimeTopPSize == 0)
|
|
{
|
|
std::fill_n(mSkipDecodeHost, batchSize, true);
|
|
return;
|
|
}
|
|
|
|
for (auto& topP : runtimeTopP)
|
|
{
|
|
if (topP < 0.f || topP > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
|
|
topP = std::clamp(topP, 0.f, 1.f);
|
|
}
|
|
}
|
|
|
|
for (auto& decay : decayVec)
|
|
{
|
|
if (decay <= 0.f || decay > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("Decay (%f) is out of range ([0.0, 1.0f]). Change to 1.0.", decay);
|
|
decay = 1.0f;
|
|
}
|
|
}
|
|
|
|
for (auto& topPMin : topPMinVec)
|
|
{
|
|
if (topPMin <= 0.f || topPMin > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP min (%f) is out of range ([0.0, 1.0f]). Change to 0.5.", topPMin);
|
|
topPMin = 0.5f;
|
|
}
|
|
}
|
|
|
|
uint32_t const topK = runtimeTopK.at(0);
|
|
float const topP = runtimeTopP.at(0);
|
|
|
|
if (runtimeTopKSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
|
|
fmtstr("runtimeTopK.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopK.size(), batchSize));
|
|
cudaAutoCpy(reinterpret_cast<uint32_t*>(setup_workspace_buf_), runtimeTopK.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(
|
|
reinterpret_cast<uint32_t*>(setup_workspace_buf_), runtime_top_k_buf_, batchSlots, batchSize, mStream);
|
|
}
|
|
if (runtimeTopPSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
|
|
fmtstr("runtime_top_p.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopP.size(), batchSize));
|
|
cudaAutoCpy(reinterpret_cast<float*>(setup_workspace_buf_), runtimeTopP.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(
|
|
reinterpret_cast<float*>(setup_workspace_buf_), runtime_top_p_buf_, batchSlots, batchSize, mStream);
|
|
}
|
|
|
|
auto fillBuffers
|
|
= [this, &batchSize, &batchSlots](std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(vector.size() == batchSize,
|
|
fmtstr("%s.size() (%lu) == batchSize (%lu) is not satisfied!", name.c_str(), vector.size(), batchSize));
|
|
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlots, batchSize, mStream);
|
|
};
|
|
|
|
fillBuffers("top_p_decay", decayVec, reinterpret_cast<float*>(setup_workspace_buf_), top_p_decay_buf_);
|
|
|
|
fillBuffers("top_p_min", topPMinVec, reinterpret_cast<float*>(setup_workspace_buf_), top_p_min_buf_);
|
|
|
|
fillBuffers(
|
|
"top_p_reset_ids", topPResetIdsVec, reinterpret_cast<int32_t*>(setup_workspace_buf_), top_p_reset_ids_buf_);
|
|
|
|
dim3 block(std::min((int) batchSize, 256));
|
|
dim3 grid(divUp((int) batchSize, (int) block.x));
|
|
set_topp_runtime_args<<<grid, block, 0, mStream>>>(batchSize, topK, runtime_top_k_buf_, runtimeTopKSize, topP,
|
|
runtime_top_p_buf_, runtimeTopPSize, mSkipDecodeDevice, initial_top_p_buf_, top_p_decay_buf_, top_p_min_buf_,
|
|
batchSlots);
|
|
sync_check_cuda_error();
|
|
|
|
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream);
|
|
|
|
std::vector<float> runtime_top_ps(mMaxBatchSize);
|
|
cudaAutoCpy(runtime_top_ps.data(), runtime_top_p_buf_, mMaxBatchSize, mStream);
|
|
// TODO(nkorobov): find maxTopP using batch slots
|
|
mRuntimeMaxTopP = *std::max_element(std::begin(runtime_top_ps), std::end(runtime_top_ps));
|
|
|
|
if (!is_deterministic_)
|
|
{
|
|
int smCnt = mCudaDeviceProp->multiProcessorCount;
|
|
air_topp_block_num_ = calcAirTopPBlockNum<T, int, float>(batchSize, (int) mVocabSizePadded, smCnt);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::runSampling(DecodingOutputParams& outputs, DecodingParams const& inputs)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
|
|
auto const batchSize = inputs.logits.shape[0];
|
|
|
|
// in case of skip any, the logit value is already copied and processed.
|
|
auto* logits = !mSkipAny ? inputs.logits.template getPtr<T>() : mRuntimeLogitsDevice;
|
|
auto* endIds = inputs.end_ids.template getPtr<const int>();
|
|
auto* batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<const int>() : nullptr;
|
|
|
|
if (is_deterministic_)
|
|
{
|
|
invokeTopPInitialize(
|
|
topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, batchSize, mVocabSizePadded, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
FinishedState* finishedInput = (inputs.finished)
|
|
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
FinishedState* finishedOutput = (outputs.finished)
|
|
? reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
invokeAddBiasSoftMax(logits, logits, (T*) (nullptr), endIds, finishedInput, batchSlots, batchSize, mVocabSize,
|
|
mVocabSizePadded, mStream);
|
|
sync_check_cuda_error();
|
|
|
|
float* cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : nullptr;
|
|
float* outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>() : nullptr;
|
|
int* sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<int>() : nullptr;
|
|
|
|
if (is_deterministic_)
|
|
{
|
|
invokeBatchTopPSampling<T>(mSamplingWorkspaceDevice, mSamplingWorkspaceSize, cub_temp_storage_size_,
|
|
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
|
|
outputLogProbs, logits, topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, mCurandStatesDevice,
|
|
batchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, runtime_top_p_buf_, mStream, mSkipDecodeDevice,
|
|
batchSlots);
|
|
sync_check_cuda_error();
|
|
invokeComputeToppDecay(runtime_top_p_buf_, initial_top_p_buf_,
|
|
outputs.output_ids_ptr.template getPtr<const int*>(), top_p_decay_buf_, top_p_min_buf_,
|
|
top_p_reset_ids_buf_, sequenceLength, batchSlots, batchSize, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
else
|
|
{
|
|
invokeBatchAirTopPSampling<T>(mSamplingWorkspaceDevice, mSamplingWorkspaceSize,
|
|
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
|
|
outputLogProbs, logits, mCurandStatesDevice, batchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP,
|
|
runtime_top_p_buf_, mStream, air_topp_block_num_, mSkipDecodeDevice, batchSlots);
|
|
sync_check_cuda_error();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
TopPSamplingLayer<T>::TopPSamplingLayer(std::size_t maxBatchSize, std::size_t vocabSize, std::size_t vocabSizePadded,
|
|
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop, bool isDeterministic)
|
|
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), prop)
|
|
, is_deterministic_(isDeterministic)
|
|
{
|
|
allocateBuffer(mMaxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
TopPSamplingLayer<T>::TopPSamplingLayer(TopPSamplingLayer<T> const& top_p_sampling_layer)
|
|
: BaseSamplingLayer<T>(top_p_sampling_layer)
|
|
{
|
|
allocateBuffer(mMaxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
TopPSamplingLayer<T>::~TopPSamplingLayer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
freeBuffer();
|
|
}
|
|
|
|
template class TopPSamplingLayer<float>;
|
|
template class TopPSamplingLayer<half>;
|
|
|
|
} // namespace layers
|
|
} // namespace tensorrt_llm
|