TensorRT-LLMs/cpp/tensorrt_llm/layers/topPSamplingLayer.cu
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

361 lines
15 KiB
Plaintext

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include <algorithm>
#include <float.h>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
namespace tensorrt_llm
{
namespace layers
{
static __global__ void set_topp_runtime_args(int batchSize, uint32_t top_k, uint32_t* top_ks, int top_ks_size,
float top_p, float* top_ps, int top_ps_size, bool* skip_decode, float* initial_top_p_buf, float* top_p_decay_buf,
float* top_p_min_buf, const int* batch_slots)
{
/**
* @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
and top_k to top_ks, verifying value ranges of top_p_decay/top_p_min.
*
* \param batchSize
* \param top_k
* \param top_ks [batchSize]
* \param top_ks_size
* \param top_p
* \param top_ps [batchSize]
* \param top_ps_size
* \param skip_decode [batchSize]
* \param initial_top_p_buf [batchSize]
* \param top_p_decay_buf [batchSize]
* \param top_p_min_buf [batchSize]
*
*/
int index = blockIdx.x * blockDim.x + threadIdx.x;
for (int bi = index; bi < batchSize; bi += gridDim.x * blockDim.x)
{
auto const batch_slot = batch_slots != nullptr ? batch_slots[bi] : bi;
std::uint32_t k = top_ks_size > 1 ? top_ks[batch_slot] : top_k;
float p = top_ps_size > 1 ? top_ps[batch_slot] : top_p;
if (k == 0 && p == 0.0f)
{
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
// equivalent to greedy search. So, we set the topk = 1 as an alternative
// solution.
k = 1;
}
top_ks[batch_slot] = k;
top_ps[batch_slot] = p;
skip_decode[batch_slot] = k > 0;
initial_top_p_buf[batch_slot] = top_ps[batch_slot];
}
}
template <typename T>
void TopPSamplingLayer<T>::allocateBuffer(size_t batchSize)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
if (is_deterministic_)
{
invokeTopPSampling<T>(nullptr, // workspace
mSamplingWorkspaceSize, cub_temp_storage_size_,
nullptr, // output_ids
nullptr, // sequence_length
nullptr, // finished_input_buffer
nullptr, // finished_output_buffer
nullptr, // cum_log_probs
nullptr, // output_log_probs
nullptr, // log_probs
topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, mCurandStatesDevice, batchSize,
mVocabSizePadded, nullptr, 0.f, mStream, mSkipDecodeDevice, nullptr);
}
else
{
invokeAirTopPSampling<T>(nullptr, mSamplingWorkspaceSize,
nullptr, // output_ids
nullptr, // sequence_length
nullptr, // finished_input_buffer
nullptr, // finished_output_buffer
nullptr, // cum_log_probs
nullptr, // output_log_probs
nullptr, // log_probs)
mCurandStatesDevice, batchSize, mVocabSizePadded, nullptr, 0.f, mStream, air_topp_block_num_,
mSkipDecodeDevice, nullptr);
}
std::array<size_t, 11> deviceBufferSizes;
deviceBufferSizes[0] = mSamplingWorkspaceSize;
deviceBufferSizes[1] = sizeof(int32_t) * batchSize * mVocabSizePadded;
deviceBufferSizes[2] = sizeof(int32_t) * (batchSize + 1);
deviceBufferSizes[3] = sizeof(int32_t) * (batchSize + 1);
deviceBufferSizes[4] = sizeof(uint32_t) * batchSize;
deviceBufferSizes[5] = sizeof(float) * batchSize;
deviceBufferSizes[6] = sizeof(float) * batchSize;
deviceBufferSizes[7] = sizeof(float) * batchSize;
deviceBufferSizes[8] = sizeof(float) * batchSize;
deviceBufferSizes[9] = sizeof(int32_t) * batchSize;
deviceBufferSizes[10] = *std::max_element(&deviceBufferSizes[4], &deviceBufferSizes[10]);
mSamplingWorkspaceDevice = mAllocator->reMalloc(mSamplingWorkspaceDevice, deviceBufferSizes[0], true);
topp_id_vals_buf_ = mAllocator->reMalloc(topp_id_vals_buf_, deviceBufferSizes[1], false);
topp_offset_buf_ = mAllocator->reMalloc(topp_offset_buf_, deviceBufferSizes[2], false);
begin_topp_offset_buf_ = mAllocator->reMalloc(begin_topp_offset_buf_, deviceBufferSizes[3], false);
runtime_top_k_buf_ = mAllocator->reMalloc(runtime_top_k_buf_, deviceBufferSizes[4], false);
runtime_top_p_buf_ = mAllocator->reMalloc(runtime_top_p_buf_, deviceBufferSizes[5], false);
initial_top_p_buf_ = mAllocator->reMalloc(initial_top_p_buf_, deviceBufferSizes[6], false);
top_p_decay_buf_ = mAllocator->reMalloc(top_p_decay_buf_, deviceBufferSizes[7], false);
top_p_min_buf_ = mAllocator->reMalloc(top_p_min_buf_, deviceBufferSizes[8], false);
top_p_reset_ids_buf_ = mAllocator->reMalloc(top_p_reset_ids_buf_, deviceBufferSizes[9], false);
setup_workspace_buf_ = mAllocator->reMalloc(setup_workspace_buf_, deviceBufferSizes[10], false);
auto const bytesAllocated = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
TLLM_LOG_DEBUG("topPSamplingLayer allocated %d bytes on GPU", bytesAllocated);
mIsAllocateBuffer = true;
}
template <typename T>
void TopPSamplingLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
if (mIsAllocateBuffer)
{
mAllocator->free((void**) (&mSamplingWorkspaceDevice));
mAllocator->free((void**) (&topp_id_vals_buf_));
mAllocator->free((void**) (&topp_offset_buf_));
mAllocator->free((void**) (&begin_topp_offset_buf_));
mAllocator->free((void**) (&runtime_top_k_buf_));
mAllocator->free((void**) (&runtime_top_p_buf_));
mAllocator->free((void**) (&initial_top_p_buf_));
mAllocator->free((void**) (&top_p_decay_buf_));
mAllocator->free((void**) (&top_p_min_buf_));
mAllocator->free((void**) (&top_p_reset_ids_buf_));
mAllocator->free((void**) (&setup_workspace_buf_));
}
BaseSamplingLayer<T>::freeBuffer();
mIsAllocateBuffer = false;
}
template <typename T>
void TopPSamplingLayer<T>::setup(size_t const batchSize, int const* batchSlots, SetupParams const& setupParams)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
BaseSamplingLayer<T>::setupBase(batchSize, batchSlots, setupParams);
uint32_t const defaultTopK = 0;
auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector<uint32_t>{defaultTopK});
auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector<float>{});
size_t const runtimeTopKSize = runtimeTopK.size();
size_t const runtimeTopPSize = runtimeTopP.size();
float const defaultTopPDecay{1.0f};
auto decayVec = setupParams.top_p_decay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
float const defaultTopPMin{1e-6f}; // prevent topp becoming 0.0
auto topPMinVec = setupParams.top_p_min.value_or(std::vector<float>(batchSize, defaultTopPMin));
int32_t const defaultTopPResetId{-1};
auto topPResetIdsVec = setupParams.top_p_reset_ids.value_or(std::vector<int32_t>(batchSize, defaultTopPResetId));
if (runtimeTopPSize == 0)
{
std::fill_n(mSkipDecodeHost, batchSize, true);
return;
}
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& decay : decayVec)
{
if (decay <= 0.f || decay > 1.0f)
{
TLLM_LOG_WARNING("Decay (%f) is out of range ([0.0, 1.0f]). Change to 1.0.", decay);
decay = 1.0f;
}
}
for (auto& topPMin : topPMinVec)
{
if (topPMin <= 0.f || topPMin > 1.0f)
{
TLLM_LOG_WARNING("TopP min (%f) is out of range ([0.0, 1.0f]). Change to 0.5.", topPMin);
topPMin = 0.5f;
}
}
uint32_t const topK = runtimeTopK.at(0);
float const topP = runtimeTopP.at(0);
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopK.size(), batchSize));
cudaAutoCpy(reinterpret_cast<uint32_t*>(setup_workspace_buf_), runtimeTopK.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<uint32_t*>(setup_workspace_buf_), runtime_top_k_buf_, batchSlots, batchSize, mStream);
}
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
fmtstr("runtime_top_p.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopP.size(), batchSize));
cudaAutoCpy(reinterpret_cast<float*>(setup_workspace_buf_), runtimeTopP.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<float*>(setup_workspace_buf_), runtime_top_p_buf_, batchSlots, batchSize, mStream);
}
auto fillBuffers
= [this, &batchSize, &batchSlots](std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
{
TLLM_CHECK_WITH_INFO(vector.size() == batchSize,
fmtstr("%s.size() (%lu) == batchSize (%lu) is not satisfied!", name.c_str(), vector.size(), batchSize));
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, mStream);
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlots, batchSize, mStream);
};
fillBuffers("top_p_decay", decayVec, reinterpret_cast<float*>(setup_workspace_buf_), top_p_decay_buf_);
fillBuffers("top_p_min", topPMinVec, reinterpret_cast<float*>(setup_workspace_buf_), top_p_min_buf_);
fillBuffers(
"top_p_reset_ids", topPResetIdsVec, reinterpret_cast<int32_t*>(setup_workspace_buf_), top_p_reset_ids_buf_);
dim3 block(std::min((int) batchSize, 256));
dim3 grid(divUp((int) batchSize, (int) block.x));
set_topp_runtime_args<<<grid, block, 0, mStream>>>(batchSize, topK, runtime_top_k_buf_, runtimeTopKSize, topP,
runtime_top_p_buf_, runtimeTopPSize, mSkipDecodeDevice, initial_top_p_buf_, top_p_decay_buf_, top_p_min_buf_,
batchSlots);
sync_check_cuda_error();
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream);
std::vector<float> runtime_top_ps(mMaxBatchSize);
cudaAutoCpy(runtime_top_ps.data(), runtime_top_p_buf_, mMaxBatchSize, mStream);
// TODO(nkorobov): find maxTopP using batch slots
mRuntimeMaxTopP = *std::max_element(std::begin(runtime_top_ps), std::end(runtime_top_ps));
if (!is_deterministic_)
{
int smCnt = mCudaDeviceProp->multiProcessorCount;
air_topp_block_num_ = calcAirTopPBlockNum<T, int, float>(batchSize, (int) mVocabSizePadded, smCnt);
}
}
template <typename T>
void TopPSamplingLayer<T>::runSampling(DecodingOutputParams& outputs, DecodingParams const& inputs)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
// in case of skip any, the logit value is already copied and processed.
auto* logits = !mSkipAny ? inputs.logits.template getPtr<T>() : mRuntimeLogitsDevice;
auto* endIds = inputs.end_ids.template getPtr<const int>();
auto* batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<const int>() : nullptr;
if (is_deterministic_)
{
invokeTopPInitialize(
topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, batchSize, mVocabSizePadded, mStream);
sync_check_cuda_error();
}
FinishedState* finishedInput = (inputs.finished)
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
FinishedState* finishedOutput = (outputs.finished)
? reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
invokeAddBiasSoftMax(logits, logits, (T*) (nullptr), endIds, finishedInput, batchSlots, batchSize, mVocabSize,
mVocabSizePadded, mStream);
sync_check_cuda_error();
float* cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : nullptr;
float* outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>() : nullptr;
int* sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<int>() : nullptr;
if (is_deterministic_)
{
invokeBatchTopPSampling<T>(mSamplingWorkspaceDevice, mSamplingWorkspaceSize, cub_temp_storage_size_,
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
outputLogProbs, logits, topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, mCurandStatesDevice,
batchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, runtime_top_p_buf_, mStream, mSkipDecodeDevice,
batchSlots);
sync_check_cuda_error();
invokeComputeToppDecay(runtime_top_p_buf_, initial_top_p_buf_,
outputs.output_ids_ptr.template getPtr<const int*>(), top_p_decay_buf_, top_p_min_buf_,
top_p_reset_ids_buf_, sequenceLength, batchSlots, batchSize, mStream);
sync_check_cuda_error();
}
else
{
invokeBatchAirTopPSampling<T>(mSamplingWorkspaceDevice, mSamplingWorkspaceSize,
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
outputLogProbs, logits, mCurandStatesDevice, batchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP,
runtime_top_p_buf_, mStream, air_topp_block_num_, mSkipDecodeDevice, batchSlots);
sync_check_cuda_error();
}
}
template <typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(std::size_t maxBatchSize, std::size_t vocabSize, std::size_t vocabSizePadded,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop, bool isDeterministic)
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), prop)
, is_deterministic_(isDeterministic)
{
allocateBuffer(mMaxBatchSize);
}
template <typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(TopPSamplingLayer<T> const& top_p_sampling_layer)
: BaseSamplingLayer<T>(top_p_sampling_layer)
{
allocateBuffer(mMaxBatchSize);
}
template <typename T>
TopPSamplingLayer<T>::~TopPSamplingLayer()
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
freeBuffer();
}
template class TopPSamplingLayer<float>;
template class TopPSamplingLayer<half>;
} // namespace layers
} // namespace tensorrt_llm