TensorRT-LLMs/examples/falcon/convert_checkpoint.py
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

739 lines
31 KiB
Python

import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor, wait
from typing import Dict, Optional, Tuple
import safetensors
import torch
from transformers import AutoModelForCausalLM, FalconConfig, FalconForCausalLM
import tensorrt_llm
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.llama.utils import ( # TODO: move the utils to common dir shared by models
iterate_shard_files, load_state_dict, retrieved_layer_index_from_name)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument('--log_level', type=str, default='info')
args = parser.parse_args()
tensorrt_llm.logger.set_level(args.log_level)
return args
def load_falcon_config(model_dir: str) -> FalconConfig:
""" Helper utility to load FalconConfig.
A pretrained checkpoint from modeling_RW.py has a different structure
and is not compatible with `transformers.FalconConfig` and
`transformers.FalconModel`. We need to manually set the config values.
"""
config = FalconConfig.from_pretrained(model_dir)
config.architectures = ["FalconForCausalLM"]
# Falcon-7B config may not have num_kv_heads or n_head_kv.
# Although Falcon-180B uses GQA (num_kv_heads=8), its config
# has multi_query=True.
if getattr(config, 'multi_query', False) and \
not getattr(config, 'new_decoder_architecture', False):
config.num_kv_heads = 1
if config.model_type not in ['RefinedWebModel', 'RefinedWeb']:
return config
if config.model_type == 'RefinedWeb':
# Case 1. Falcon-40B / Falcon-40B-instruct
# https://huggingface.co/tiiuae/falcon-40b/blob/main/config.json
config.num_hidden_layers = config.n_layer
config.num_attention_heads = config.n_head
config.num_kv_heads = config.n_head_kv
config.new_decoder_architecture = True
elif config.model_type == 'RefinedWebModel':
# Case 2. Falcon-7B / Falcon-7B-instruct
# https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
config.num_hidden_layers = config.n_layer
config.num_attention_heads = config.n_head
config.num_kv_heads = 1 if config.multi_query else config.n_head
config.new_decoder_architecture = False
else:
raise ValueError("Shouldn't reach here.")
config.model_type = 'falcon'
return config
def split(weight: torch.Tensor,
tp_size: int,
rank: int = 0,
dim: int = 0) -> torch.Tensor:
if tp_size == 1:
return weight
elif weight.ndim == 1:
return torch.chunk(weight, tp_size)[rank].clone()
else:
return torch.chunk(weight, tp_size, dim=dim)[rank].clone()
def reorder_qkv_weight_or_bias(weight: torch.Tensor,
head_dim: int,
num_heads: int,
num_kv_heads: Optional[int] = None,
tp_size: int = 1,
is_bias: bool = False) -> torch.Tensor:
""" Reorder the qkv weight for TRT-LLM use.
The shape of the fused QKV weights in HF is different from the shape that
TRT-LLM requires. In particular, the weight of HF consists of interleaved
q, k, v head weights, while that of TRT-LLM is contiguous.
HF : [q1, k1, v1, ..., qh, kh, vh]
TRT-LLM: [q1, ..., qh, k1, ..., kh, v1, vh]
where qi, vi, ki are weight vectors corresponding to attention head i.
It's similar to multi/grouped query attention cases.
We reorder and split the weight of an attention layer to fit into TRT-LLM.
The reordered weight and bias will be
weight: (T, Qh * D + 2 * KVh * D, H)
bias : (T, Qh * D + 2 * KVh * D)
where T=tp_size, Qh=local_num_q_heads, KVh=local_num_kv_heads, D=head_dim,
H=hidden_dim. In the multi/grouped query attention, the number of K/V
attention heads are less than that of Q attention, so that K/V attention
heads may be shared across different ranks if necessary.
For tensor parallelism, we use the first dimension to select the
corresponding weights.
"""
# Query types and expected kv heads.
# - Conventional MHA: num_heads = num_kv_heads
# - Multi-Query Attention: num_kv_heads = 1
# - Grouped-Query Attention: num_heads % num_kv_heads = 0
num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
assert num_heads % num_kv_heads == 0, \
f'num_heads({num_heads}) must be divisible by '\
f'num_kv_heads({num_kv_heads})).'
# The number of attention heads per group: N q head + 1 k head + 1 v head.
num_group_heads = num_heads // num_kv_heads + 2
assert weight.shape[0] == num_kv_heads * num_group_heads * head_dim, \
f'{weight.shape[0]} != {num_kv_heads} * {num_group_heads} * {head_dim}'
qkv_in = num_heads * head_dim if not is_bias else 1
# Split Q/K/V weights
weight = weight.reshape(num_kv_heads, num_heads // num_kv_heads + 2,
head_dim, qkv_in)
q_w = weight[:, :-2, ...] # (nKV, num_heads // nKV, head_dim, qkv_in)
k_w = weight[:, -2:-1, ...] # (nKV, 1, head_dim, qkv_in)
v_w = weight[:, -1:, ...] # (nKV, 1, head_dim, qkv_in)
if num_kv_heads < num_heads and num_kv_heads < tp_size:
# Duplicate K/V heads to make sure that each rank has at least one
# K/V heads. For instance, num_heads=8, num_kv_heads=2, tp_size=4,
# we will make the qkv weight as below.
# Orig: [q0 q1 q2 q3 k0 v0 q4 q5 q6 q7 k1 v0 v1]
# >>>> [[q0 q1 k0 v0], [q2 q3 k0 v0], [q4 q5 k1 v1], [q6 q7 k1 v1]]
assert tp_size % num_kv_heads == 0
num_dups = tp_size // num_kv_heads
# k_w and v_w have the same shape.
new_shape = (num_kv_heads, num_dups) + k_w.shape[2:]
k_w = torch.broadcast_to(k_w, size=new_shape)
v_w = torch.broadcast_to(v_w, size=new_shape)
# Update the number of kv heads.
num_kv_heads = tp_size
reordered = torch.concat(
[
q_w.reshape(tp_size, num_heads // tp_size, head_dim, qkv_in),
k_w.reshape(tp_size, num_kv_heads // tp_size, head_dim, qkv_in),
v_w.reshape(tp_size, num_kv_heads // tp_size, head_dim, qkv_in),
],
dim=1,
)
qkv_out = (num_heads + 2 * num_kv_heads) // tp_size * head_dim
return reordered.reshape((tp_size, qkv_out, -1))
def split_qkv_weight(weight: torch.Tensor,
hidden_size: int,
num_heads: int,
tp_size: int,
rank: int,
is_bias: bool,
num_kv_heads: Optional[int] = None) -> torch.Tensor:
""" Splits the QKV matrix according to tensor parallelism """
head_dim = hidden_size // num_heads
weight = reorder_qkv_weight_or_bias(weight,
head_dim=head_dim,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
tp_size=tp_size,
is_bias=is_bias)
# Copy a sliced tensor to prevent memory leak. A sliced tensor shares the
# memory buffer of the original tensor. So, returning without copying makes
# the buffer of a loaded "qkv" be referenced, resulting GC can't release
# those weights until the whole process ends.
if not is_bias:
return weight[rank, ...].clone()
else:
return weight[rank, ...].ravel().clone()
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
dim: int) -> torch.Tensor:
return split(weight, tp_size, rank, dim=dim)
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.weight' not in params:
return None
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.bias' not in params:
return None
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> Tuple[torch.Tensor]:
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
def get_tllm_linear_weight(
weight: torch.Tensor,
prefix: str,
bias: Optional[torch.Tensor] = None,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[f'{prefix}.weight'] = processed_torch_weights
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
else:
results[f'{prefix}.weight'] = weight
if bias is not None:
results[f'{prefix}.bias'] = bias
return results
def get_tllm_param(
param: torch.Tensor,
name: str,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if name.endswith('.weight') and use_weight_only:
v = param.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[name] = processed_torch_weights
results[name.replace('weight',
'per_channel_scale')] = torch_weight_scales
else:
results[name] = param
return results
def convert_hf_falcon(hf_model: FalconForCausalLM,
hf_config: FalconConfig,
mapping: Mapping,
dtype: str = 'float32',
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
share_embedding_table: bool = False,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8):
weights = {}
tik = time.time()
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, dtype)
num_attention_heads = hf_config.num_attention_heads
hidden_size = hf_config.hidden_size
vocab_size = hf_config.vocab_size
num_kv_heads = getattr(hf_config, 'num_kv_heads', num_attention_heads)
num_hidden_layers = hf_config.num_hidden_layers
parallel_attention = hf_config.parallel_attn
new_decoder_architecture = hf_config.new_decoder_architecture
layers_range = mapping.pp_layers(num_hidden_layers)
for l in layers_range:
prefix = f'transformer.h.{l}'
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
qkv_weight, qkv_bias = get_weight_and_bias(
model_params, f'{prefix}.self_attention.query_key_value', dtype)
qkv_w = split_qkv_weight(qkv_weight,
hidden_size,
num_attention_heads,
mapping.tp_size,
mapping.tp_rank,
is_bias=False,
num_kv_heads=num_kv_heads)
if qkv_bias is None:
qkv_b = None
else:
qkv_b = split_qkv_weight(qkv_bias,
hidden_size,
num_attention_heads,
mapping.tp_size,
mapping.tp_rank,
is_bias=True,
num_kv_heads=num_kv_heads)
weights.update(
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv', qkv_b,
use_weight_only,
plugin_weight_only_quant_type))
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, f'{prefix}.self_attention.dense', dtype)
attn_dense_w = split_matrix(attn_dense_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(attn_dense_w, f'{tllm_prex}.attention.dense',
attn_dense_bias, use_weight_only,
plugin_weight_only_quant_type))
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.dense_h_to_4h', dtype)
mlp_fc_w = split_matrix(mlp_fc_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
if mlp_fc_bias is None:
mlp_fc_b = None
else:
mlp_fc_b = split_matrix(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc', mlp_fc_b,
use_weight_only,
plugin_weight_only_quant_type))
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.dense_4h_to_h', dtype)
mlp_proj_w = split_matrix(mlp_proj_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
if new_decoder_architecture:
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.ln_attn', dtype)
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
if input_ln_bias is not None:
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
mlp_ln_weight, mlp_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.ln_mlp', dtype)
weights[f'{tllm_prex}.mlp_layernorm.weight'] = mlp_ln_weight
if mlp_ln_bias is not None:
weights[f'{tllm_prex}.mlp_layernorm.bias'] = mlp_ln_bias
else:
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.input_layernorm', dtype)
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
if input_ln_bias is not None:
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
if not parallel_attention:
post_ln_weight, post_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.post_attention_layernorm', dtype)
if post_ln_weight is not None:
weights[
f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
if post_ln_bias is not None:
weights[f'{tllm_prex}.post_layernorm.bias'] = post_ln_bias
embed_w = get_weight(model_params, 'transformer.word_embeddings', dtype)
if mapping.is_first_pp_rank():
if not use_parallel_embedding:
weights['transformer.vocab_embedding.weight'] = embed_w
else:
if sharding_dim == 0:
assert vocab_size % mapping.tp_size == 0
else:
assert hidden_size % mapping.tp_size == 0
weights['transformer.vocab_embedding.weight'] = split_matrix(
embed_w, mapping.tp_size, mapping.tp_rank, sharding_dim)
if mapping.is_last_pp_rank():
if not share_embedding_table:
weights['lm_head.weight'] = split_matrix(embed_w.clone(),
mapping.tp_size,
mapping.tp_rank,
dim=0)
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
dtype)
weights['transformer.ln_f.weight'] = ln_f_w
if ln_f_b is not None:
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
def load_from_hf_falcon_checkpoint(
hf_model_dir: str,
hf_config: FalconConfig,
mapping: Mapping,
dtype: str = 'float32',
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
share_embedding_table: bool = False,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8):
weights = {}
tik = time.time()
dtype = getattr(torch, dtype)
num_attention_heads = hf_config.num_attention_heads
hidden_size = hf_config.hidden_size
vocab_size = hf_config.vocab_size
num_kv_heads = getattr(hf_config, 'num_kv_heads', num_attention_heads)
num_hidden_layers = hf_config.num_hidden_layers
layers_range = mapping.pp_layers(num_hidden_layers)
for model_file in iterate_shard_files(hf_model_dir, mapping.tp_rank):
state_dict = load_state_dict(model_file, dtype)
for name, param in state_dict.items():
l = retrieved_layer_index_from_name(name)
if l is not None:
if l not in layers_range:
continue
prefix = f'transformer.layers.{l-layers_range[0]}'
if 'self_attention.query_key_value' in name:
if name.endswith('weight'):
qkv_w = split_qkv_weight(param,
hidden_size,
num_attention_heads,
mapping.tp_size,
mapping.tp_rank,
is_bias=False,
num_kv_heads=num_kv_heads)
weights.update(
get_tllm_param(qkv_w,
f'{prefix}.attention.qkv.weight',
use_weight_only,
plugin_weight_only_quant_type))
else:
qkv_b = split_qkv_weight(param,
hidden_size,
num_attention_heads,
mapping.tp_size,
mapping.tp_rank,
is_bias=True,
num_kv_heads=num_kv_heads)
weights.update(
get_tllm_param(qkv_b,
f'{prefix}.attention.qkv.bias',
use_weight_only,
plugin_weight_only_quant_type))
elif 'self_attention.dense' in name:
if name.endswith('weight'):
attn_dense_w = split_matrix(param,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_param(attn_dense_w,
f'{prefix}.attention.dense.weight',
use_weight_only,
plugin_weight_only_quant_type))
else:
weights.update(
get_tllm_param(param,
f'{prefix}.attention.dense.bias',
use_weight_only,
plugin_weight_only_quant_type))
elif 'mlp.dense_h_to_4h' in name:
if name.endswith('weight'):
mlp_fc_w = split_matrix(param,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_param(mlp_fc_w, f'{prefix}.mlp.fc.weight',
use_weight_only,
plugin_weight_only_quant_type))
else:
mlp_fc_b = split_matrix(param,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_param(mlp_fc_b, f'{prefix}.mlp.fc.bias',
use_weight_only,
plugin_weight_only_quant_type))
elif 'mlp.dense_4h_to_h' in name:
if name.endswith('weight'):
mlp_proj_w = split_matrix(param,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_param(mlp_proj_w,
f'{prefix}.mlp.proj.weight',
use_weight_only,
plugin_weight_only_quant_type))
else:
weights.update(
get_tllm_param(param, f'{prefix}.mlp.proj.bias',
use_weight_only,
plugin_weight_only_quant_type))
elif 'ln_attn' in name or 'input_layernorm' in name:
if name.endswith('weight'):
weights[f'{prefix}.input_layernorm.weight'] = param
else:
weights[f'{prefix}.input_layernorm.bias'] = param
elif 'ln_mlp' in name:
if name.endswith('weight'):
weights[f'{prefix}.mlp_layernorm.weight'] = param
else:
weights[f'{prefix}.mlp_layernorm.bias'] = param
elif 'post_attention_layernorm' in name:
if name.endswith('weight'):
weights[f'{prefix}.post_layernorm.weight'] = param
else:
weights[f'{prefix}.post_layernorm.bias'] = param
elif 'word_embeddings' in name:
if mapping.is_first_pp_rank():
if not use_parallel_embedding:
weights['transformer.vocab_embedding.weight'] = param
else:
if sharding_dim == 0:
assert vocab_size % mapping.tp_size == 0
else:
assert hidden_size % mapping.tp_size == 0
weights[
'transformer.vocab_embedding.weight'] = split_matrix(
param, mapping.tp_size, mapping.tp_rank,
sharding_dim)
if mapping.is_last_pp_rank() and not share_embedding_table:
weights['lm_head.weight'] = split_matrix(param,
mapping.tp_size,
mapping.tp_rank,
dim=0)
elif 'ln_f' in name:
if mapping.is_last_pp_rank():
if name.endswith('weight'):
weights['transformer.ln_f.weight'] = param
else:
weights['transformer.ln_f.bias'] = param
del state_dict
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
if __name__ == '__main__':
# TODO(qijun): Currently, the convert script depends on a torch op:
# torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix,
# which is included in tensorrt_llm Python package. Otherwise, the convert
# script does not need to import tensorrt_llm. Will remove it after reimplementing
# the op with PyTorch.
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
quant_algo = None
plugin_weight_only_quant_type = None
if args.use_weight_only and args.weight_only_precision == 'int8':
plugin_weight_only_quant_type = torch.int8
quant_algo = 'W8A16'
elif args.use_weight_only and args.weight_only_precision == 'int4':
plugin_weight_only_quant_type = torch.quint4x2
quant_algo = 'W4A16'
hf_config = load_falcon_config(args.model_dir)
config = {
'architecture': hf_config.architectures[0],
'dtype': args.dtype,
'num_hidden_layers': hf_config.num_hidden_layers,
'num_attention_heads': hf_config.num_attention_heads,
'num_key_value_heads': hf_config.num_kv_heads,
'hidden_size': hf_config.hidden_size,
'norm_epsilon': hf_config.layer_norm_epsilon,
'vocab_size': hf_config.vocab_size,
'position_embedding_type':
'alibi_with_scale' if hf_config.alibi else 'rope_gpt_neox',
'max_position_embeddings': hf_config.max_position_embeddings,
'hidden_act': 'gelu',
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'share_embedding_table': args.use_embedding_sharing,
'quantization': {
'quant_algo': quant_algo,
},
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'bias': hf_config.bias,
'parallel_attention': hf_config.parallel_attn,
'new_decoder_architecture': hf_config.new_decoder_architecture,
}
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
def covert_and_save(rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
if args.load_by_shard:
weights = load_from_hf_falcon_checkpoint(
args.model_dir,
hf_config,
mapping,
dtype=args.dtype,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=args.use_embedding_sharing,
use_weight_only=args.use_weight_only,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
else:
hf_model = AutoModelForCausalLM.from_pretrained(
args.model_dir, trust_remote_code=True, torch_dtype="auto")
weights = convert_hf_falcon(
hf_model,
hf_config,
mapping,
dtype=args.dtype,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=args.use_embedding_sharing,
use_weight_only=args.use_weight_only,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
del hf_model
safetensors.torch.save_file(
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
if args.workers == 1:
for rank in range(world_size):
covert_and_save(rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank) for rank in range(world_size)
]
wait(futures)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')