mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: erenup <ping.nie@pku.edu.cn> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
191 lines
7.4 KiB
Python
191 lines
7.4 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections import OrderedDict
|
|
|
|
import tensorrt as trt
|
|
|
|
from tensorrt_llm.models.llama.model import LLaMAForCausalLM
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import ACT2FN, Tensor, stack
|
|
from ...layers import ColumnLinear
|
|
from ...mapping import Mapping
|
|
from ...module import Module, ModuleList
|
|
from ..generation_mixin import GenerationMixin
|
|
|
|
|
|
class MedusaLayer(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
hidden_act="silu",
|
|
dtype=None,
|
|
mapping=Mapping(),
|
|
):
|
|
super().__init__()
|
|
self.linear = ColumnLinear(hidden_size,
|
|
hidden_size,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True)
|
|
self.hidden_act = hidden_act
|
|
|
|
def forward(self, x):
|
|
return x + ACT2FN[self.hidden_act](self.linear(x))
|
|
|
|
|
|
class MedusaHead(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers,
|
|
hidden_size,
|
|
vocab_size,
|
|
hidden_act="silu",
|
|
dtype=None,
|
|
mapping=Mapping(),
|
|
):
|
|
super().__init__()
|
|
self.medusa_layers = ModuleList([
|
|
MedusaLayer(hidden_size=hidden_size,
|
|
hidden_act=hidden_act,
|
|
dtype=dtype,
|
|
mapping=mapping) for _ in range(num_layers)
|
|
])
|
|
self.lm_head = ColumnLinear(hidden_size,
|
|
vocab_size,
|
|
bias=False,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True)
|
|
return
|
|
|
|
def forward(self, x):
|
|
hidden_states = x
|
|
for layer in self.medusa_layers:
|
|
hidden_states = layer(hidden_states)
|
|
return self.lm_head(hidden_states)
|
|
|
|
|
|
class MedusaForCausalLm(LLaMAForCausalLM):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__(config)
|
|
self.num_medusa_heads = config.num_medusa_heads
|
|
self.num_medusa_layers = config.num_medusa_layers
|
|
self.hidden_size = config.hidden_size
|
|
self.vocab_size = config.vocab_size
|
|
vocab_size_padded = pad_vocab_size(self.vocab_size,
|
|
config.mapping.tp_size)
|
|
self.medusa_heads = ModuleList([
|
|
MedusaHead(num_layers=self.num_medusa_layers,
|
|
hidden_size=config.hidden_size,
|
|
vocab_size=vocab_size_padded,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
mapping=config.mapping)
|
|
for _ in range(self.num_medusa_heads)
|
|
])
|
|
self.max_medusa_token_len = config.max_medusa_token_len
|
|
|
|
def forward(self, *args, **kwargs):
|
|
output_original = True
|
|
hidden_states = super().forward(*args, **kwargs)
|
|
|
|
if kwargs['use_cache']:
|
|
if default_net().plugin_config.paged_kv_cache:
|
|
lm_logits, hidden_states = hidden_states
|
|
else:
|
|
lm_logits, presents, hidden_states = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
medusa_logits = []
|
|
for i in range(self.num_medusa_heads):
|
|
medusa_logits.append(self.medusa_heads[i](hidden_states))
|
|
# [num_medusa_heads, batch_size, num_medusa_tokens + 1, padded_vocab_size].
|
|
# Remove padding [num_medusa_heads, batch_size * num_medusa_tokens + 1, padded_vocab_size].
|
|
medusa_logits = stack(medusa_logits, dim=0)
|
|
medusa_logits.mark_output('medusa_logits', self.config.logits_dtype)
|
|
else:
|
|
hidden_states.mark_output('hidden_states_output', self.config.dtype)
|
|
|
|
if kwargs['use_cache'] and default_net(
|
|
).plugin_config.paged_kv_cache == False:
|
|
if self.mapping.is_last_pp_rank():
|
|
if output_original:
|
|
return (medusa_logits, lm_logits, presents)
|
|
return (medusa_logits, presents)
|
|
return (hidden_states, presents)
|
|
else:
|
|
if self.mapping.is_last_pp_rank():
|
|
if output_original:
|
|
return medusa_logits, lm_logits
|
|
return medusa_logits
|
|
return hidden_states
|
|
|
|
def prepare_inputs(self, *args, **kwargs):
|
|
inputs = super().prepare_inputs(*args, **kwargs)
|
|
num_profiles = len(inputs['input_ids'].profiles)
|
|
max_gen_token_len = self.max_medusa_token_len + 1
|
|
medusa_mask_len_range = [[0, max_gen_token_len, max_gen_token_len]
|
|
] * num_profiles
|
|
medusa_position_len_range = [[0, max_gen_token_len, max_gen_token_len]
|
|
] * num_profiles
|
|
# # 32 bits packed mask aligned.
|
|
num_packed_medusa_masks = (self.max_medusa_token_len + 1 + 32 - 1) // 32
|
|
packed_medusa_mask_len_range = [[0, 1, num_packed_medusa_masks]
|
|
] * num_profiles
|
|
|
|
# batch beam range (different sequence may have different medusa offsets or packed masks).
|
|
bb_range_cxt = GenerationMixin.default_range(kwargs['max_batch_size'])
|
|
bb_range_gen = GenerationMixin.default_range(kwargs['max_batch_size'] *
|
|
kwargs['max_beam_width'])
|
|
# enable_two_optimization_profiles
|
|
if num_profiles == 2:
|
|
bb_range = [bb_range_cxt, bb_range_gen]
|
|
else:
|
|
bb_range = [bb_range_gen]
|
|
|
|
# medusa position offsets that are fixed during the whole session.
|
|
# it will be shared among all sequences.
|
|
medusa_position_offsets = Tensor(
|
|
name='medusa_position_offsets',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_beam_width', bb_range),
|
|
('medusa_position_ids_dim0', medusa_position_len_range),
|
|
]),
|
|
)
|
|
|
|
medusa_packed_mask = Tensor(
|
|
name='medusa_packed_mask',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_beam_width', bb_range),
|
|
('medusa_packed_mask_dim0', medusa_mask_len_range),
|
|
('medusa_packed_mask_dim1', packed_medusa_mask_len_range),
|
|
]),
|
|
)
|
|
inputs['medusa_packed_mask'] = medusa_packed_mask
|
|
inputs['medusa_position_offsets'] = medusa_position_offsets
|
|
return inputs
|