TensorRT-LLMs/tests/functional/test_cumsum.py
Kaiyu Xie deaae40bd7
Update TensorRT-LLM (#787)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-02 17:54:32 +08:00

86 lines
2.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from parameterized import parameterized
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
('int32', (256, ), 0),
('int32', (256, ), -1),
('float32', (3, 16), 0),
('float32', (3, 16), 1),
('float32', (3, 16), -2),
('float16', (5, 6, 8), 1),
('float16', (5, 6, 8), 2),
('float16', (5, 6, 8), -3),
])
def test_cumsum(self, dtype, x_shape, dim):
if 'float' in dtype:
x_data = torch.rand(
x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
else:
x_data = torch.randint(
-100,
100,
x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.cumsum(x, dim=dim).trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork(
(builder.trt_builder, net.trt_network),
config=CreateConfig(fp16=(dtype == 'float16')))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
ref = torch.cumsum(x_data.cuda(), dim=dim)
tols = {
"float32": {
"rtol": 1e-05,
"atol": 1e-05
},
"float16": {
"rtol": 1e-02,
"atol": 1e-02
},
"int32": {
"rtol": 0,
"atol": 0
},
}
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'],
**tols[dtype])