mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-26 21:53:30 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
86 lines
2.9 KiB
Python
86 lines
2.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([
|
|
('int32', (256, ), 0),
|
|
('int32', (256, ), -1),
|
|
('float32', (3, 16), 0),
|
|
('float32', (3, 16), 1),
|
|
('float32', (3, 16), -2),
|
|
('float16', (5, 6, 8), 1),
|
|
('float16', (5, 6, 8), 2),
|
|
('float16', (5, 6, 8), -3),
|
|
])
|
|
def test_cumsum(self, dtype, x_shape, dim):
|
|
if 'float' in dtype:
|
|
x_data = torch.rand(
|
|
x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
else:
|
|
x_data = torch.randint(
|
|
-100,
|
|
100,
|
|
x_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.cumsum(x, dim=dim).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
build_engine = EngineFromNetwork(
|
|
(builder.trt_builder, net.trt_network),
|
|
config=CreateConfig(fp16=(dtype == 'float16')))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
ref = torch.cumsum(x_data.cuda(), dim=dim)
|
|
tols = {
|
|
"float32": {
|
|
"rtol": 1e-05,
|
|
"atol": 1e-05
|
|
},
|
|
"float16": {
|
|
"rtol": 1e-02,
|
|
"atol": 1e-02
|
|
},
|
|
"int32": {
|
|
"rtol": 0,
|
|
"atol": 0
|
|
},
|
|
}
|
|
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'],
|
|
**tols[dtype])
|