TensorRT-LLMs/tests/functional/test_nccl.py
Kaiyu Xie b57221b764
Update TensorRT-LLM (#941)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-23 23:22:35 +08:00

136 lines
4.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from itertools import product
import pytest
# isort: off
import torch
# isort: on
from cuda import cudart
from parameterized import parameterized
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork
import tensorrt_llm as tllm
from tensorrt_llm import Mapping, Tensor
from tensorrt_llm._ipc_utils import peer_access
from tensorrt_llm.functional import AllReduceStrategy, allreduce
from tensorrt_llm.plugin.plugin import current_all_reduce_helper
def custom_name_func(testcase_func, param_num, param):
return "%s_%s" % (
testcase_func.__name__,
parameterized.to_safe_name("_".join(str(x) for x in param.args)),
)
class TestCommunicationPlugin(unittest.TestCase):
def setUp(self):
tllm.logger.set_level('error')
self.world_size = tllm.mpi_world_size()
self.rank = tllm.mpi_rank()
torch.cuda.set_device(self.rank)
cudart.cudaSetDevice(self.rank)
self.reference_tensors = [
torch.full([10000000], i + 1, dtype=torch.float32, device="cuda")
for i in range(self.world_size)
]
self.mapping = Mapping(self.world_size, self.rank, self.world_size,
self.world_size)
@parameterized.expand(list(
product(["bfloat16", 'float16', "float32"], [
AllReduceStrategy.RING, AllReduceStrategy.ONESHOT,
AllReduceStrategy.TWOSHOT
], [64 * 70000, 64 * 70, 64])),
name_func=custom_name_func)
def test_nccl_allreduce(self, dtype: str, strategy: AllReduceStrategy,
size: int):
if self.world_size == 1:
pytest.skip()
workspace = None
torch_dtype = tllm._utils.str_dtype_to_torch(dtype)
dtype_size = torch.finfo(torch_dtype).bits // 8
allreduce_ref = torch.zeros(self.reference_tensors[0][:size].shape,
dtype=torch_dtype,
device="cuda")
for i in range(self.world_size):
allreduce_ref = allreduce_ref + self.reference_tensors[i][:size].to(
torch_dtype)
builder = tllm.Builder()
net = builder.create_network()
net.plugin_config.set_nccl_plugin(dtype, use_custom_all_reduce=True)
_, workspace = current_all_reduce_helper().allocate_workspace(
self.mapping, size * dtype_size)
input = self.reference_tensors[self.rank][:size].to(torch_dtype)
inner_loop = 5
with peer_access(self.mapping):
with tllm.net_guard(net):
network = tllm.default_trtnet()
x = Tensor(name='x',
shape=input.shape,
dtype=tllm.str_dtype_to_trt(dtype))
current_all_reduce_helper().set_workspace_tensor(self.mapping)
current = x
for i in range(inner_loop):
current = allreduce(current, self.mapping.tp_group,
strategy)
output = current.trt_tensor
output.name = 'output'
output.dtype = tllm.str_dtype_to_trt(dtype)
network.mark_output(output)
build_engine = EngineFromNetwork(
(builder.trt_builder, net.trt_network),
config=CreateConfig(
fp16=(dtype == 'float16'),
bf16=(dtype == 'bfloat16'),
precision_constraints='obey',
))
output = torch.zeros_like(input)
stream = torch.cuda.current_stream()
feed_dict = {'x': input, 'all_reduce_workspace': workspace}
session = tllm.runtime.Session.from_engine(build_engine())
session.run(inputs=feed_dict,
outputs={"output": output},
stream=stream.cuda_stream)
torch.cuda.synchronize()
self.assertTrue(
torch.allclose(output.cpu(),
(self.mapping.tp_size**(inner_loop - 1)) *
allreduce_ref.cpu()))
if __name__ == "__main__":
unittest.main()