TensorRT-LLMs/tests/functional/test_selective_scan.py
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

207 lines
8.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import numpy as np
import pytest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from torch_ref import selective_scan_ref, selective_state_update_ref
from utils.util import getSMVersion
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand(
list(
product([2048], [16], ['context', 'generation'],
['float16', 'float32', 'bfloat16'])))
def test_selective_scan(self, dim, dstate, req_type, dtype):
# Skip tests that are not supported in pre-ampere architecture
if getSMVersion() < 80:
if dtype == 'bfloat16':
pytest.skip(
"bfloat16 is not supported in pre-ampere architecture")
# configs
batch_size = 1
device = "cuda"
seq_len = 16 if req_type == 'context' else 1
is_variable_B = True
is_variable_C = True
delta_softplus = True
# test data
torch.random.manual_seed(0)
state = torch.randn(batch_size, dim, dstate, device=device)
x = torch.randn(batch_size,
dim,
seq_len,
device=device,
dtype=str_dtype_to_torch(dtype))
dt = torch.randn(batch_size,
dim,
seq_len,
device=device,
dtype=str_dtype_to_torch(dtype))
dt_bias = torch.rand(dim, device=device) - 4.0
A = -torch.rand(dim, dstate, device=device) - 1.0
B = torch.randn(batch_size,
dstate,
seq_len,
device=device,
dtype=str_dtype_to_torch(dtype))
C = torch.randn(batch_size,
dstate,
seq_len,
device=device,
dtype=str_dtype_to_torch(dtype))
D = torch.randn(dim, device=device)
z = torch.randn_like(x)
host_request_types = torch.tensor([0 if req_type == 'context' else 1] *
batch_size,
dtype=torch.int32)
output = torch.zeros(x.shape,
device=device,
dtype=str_dtype_to_torch(dtype))
state_ref = state.detach().clone()
x_ref = x.detach().clone()
dt_ref = dt.detach().clone()
dt_bias_ref = dt_bias.detach().clone()
A_ref = A.detach().clone()
B_ref = B.detach().clone()
C_ref = C.detach().clone()
D_ref = D.detach().clone()
z_ref = z.detach().clone()
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
x_tensor = Tensor(name='input',
shape=x.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
state_tensor = Tensor(
name='state',
shape=state.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
dt_tensor = Tensor(name='delta',
shape=dt.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
dt_bias_tensor = Tensor(
name='delta_bias',
shape=dt_bias.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
A_tensor = Tensor(name='A',
shape=A.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
B_tensor = Tensor(name='B',
shape=B.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
C_tensor = Tensor(name='C',
shape=C.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
D_tensor = Tensor(name='D',
shape=D.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
z_tensor = Tensor(name='z',
shape=z.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
host_request_types_tensor = Tensor(
name='host_request_types',
shape=host_request_types.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
outputs = tensorrt_llm.functional.selective_scan(
x_tensor, state_tensor, dt_tensor, dt_bias_tensor, A_tensor,
B_tensor, C_tensor, D_tensor, z_tensor,
host_request_types_tensor, dim, dstate, is_variable_B,
is_variable_C, delta_softplus, dtype)
net._mark_output(outputs[0],
'output',
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
net._mark_output(outputs[1],
'present_state',
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
# trt run
inputs = {
'input': x,
'state': state,
'delta': dt,
'delta_bias': dt_bias,
'A': A,
'B': B,
'C': C,
'D': D,
'z': z,
'host_request_types': host_request_types
}
outputs = {'output': output, 'present_state': state}
stream = torch.cuda.current_stream()
builder_config = builder.create_builder_config(precision=dtype, )
engine = builder.build_engine(net, builder_config)
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
session.run(inputs=inputs, outputs=outputs, stream=stream.cuda_stream)
if req_type == 'context':
# pytorch run
out_ref, state_ref = selective_scan_ref(x_ref,
dt_ref,
A_ref,
B_ref,
C_ref,
D=D_ref,
z=z_ref,
delta_bias=dt_bias_ref,
delta_softplus=True)
elif req_type == 'generation':
# pytorch run
out_ref = selective_state_update_ref(state_ref,
x_ref.squeeze(2),
dt_ref.squeeze(2),
A_ref,
B_ref.squeeze(2),
C_ref.squeeze(2),
D=D_ref,
z=z_ref.squeeze(2),
dt_bias=dt_bias_ref,
dt_softplus=True)
out_ref = out_ref.unsqueeze(2)
dtype_atol = {"float16": 5e-3, "float32": 2e-3, "bfloat16": 5e-2}
np.testing.assert_allclose(out_ref.to(torch.float32).cpu().numpy(),
outputs['output'].to(
torch.float32).cpu().numpy(),
atol=dtype_atol[dtype])
np.testing.assert_allclose(state_ref.to(torch.float32).cpu().numpy(),
outputs['present_state'].to(
torch.float32).cpu().numpy(),
atol=dtype_atol[dtype])