TensorRT-LLMs/tests/hlapi/test_llm.py
Kaiyu Xie e06f537e08
Update TensorRT-LLM (#1019)
* Update TensorRT-LLM

---------

Co-authored-by: erenup <ping.nie@pku.edu.cn>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-31 21:55:32 +08:00

193 lines
5.8 KiB
Python

import asyncio
import os
import sys
import tempfile
from typing import List
import pytest
import torch
from transformers import AutoTokenizer
from tensorrt_llm.hlapi.llm import (LLM, ModelConfig, SamplingConfig,
TokenizerBase, TransformersTokenizer)
def get_model_path():
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.llm_data import llm_models_root
return str(llm_models_root() / "llama-models/llama-7b-hf")
llama_model_path = get_model_path()
llm_engine_dir = os.environ.get('LLM_ENGINE_DIR', './tmp.engine')
prompts = ["Tell a story", "Who are you"]
cur_dir = os.path.dirname(os.path.abspath(__file__))
models_root = os.path.join(cur_dir, '../../models')
def test_tokenizer():
tokenizer = TransformersTokenizer.from_pretrained(llama_model_path)
res = tokenizer("hello world")
assert res
def test_llm_loadding_from_hf():
config = ModelConfig(llama_model_path)
llm = LLM(config)
for output in llm.generate(prompts):
print(output)
class MyTokenizer(TokenizerBase):
''' A wrapper for the Transformers' tokenizer.
This is the default tokenizer for LLM. '''
@classmethod
def from_pretrained(cls, pretrained_model_dir: str, **kwargs):
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir,
**kwargs)
return MyTokenizer(tokenizer)
def __init__(self, tokenizer):
self.tokenizer = tokenizer
@property
def eos_token_id(self) -> int:
return self.tokenizer.eos_token_id
@property
def pad_token_id(self) -> int:
return self.tokenizer.pad_token_id
def encode(self, text: str) -> List[int]:
return self.tokenizer.encode(text)
def decode(self, token_ids: List[int]) -> str:
return self.tokenizer.decode(token_ids)
def batch_encode_plus(self, texts: List[str]) -> dict:
return self.tokenizer.batch_encode_plus(texts)
def test_llm_with_customized_tokenizer():
config = ModelConfig(llama_model_path)
llm = LLM(
config,
# a customized tokenizer is passed to override the default one
tokenizer=MyTokenizer.from_pretrained(config.model_dir))
for output in llm.generate(prompts):
print(output)
def test_llm_without_tokenizer():
config = ModelConfig(llama_model_path)
llm = LLM(
config,
# this will turn off tokenizer for pre-processing and post-processing
enable_tokenizer=False,
)
sampling_config = SamplingConfig(end_id=2,
pad_id=2,
output_sequence_lengths=True,
return_dict=True)
prompts = [[23, 14, 3]]
for output in llm.generate(prompts, sampling_config=sampling_config):
print(output)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="The test needs at least 2 GPUs, skipping")
def test_llm_build_engine_for_tp2():
config = ModelConfig(llama_model_path)
config.parallel_config.tp_size = 2
llm = LLM(config)
with tempfile.TemporaryDirectory() as tmpdir:
llm.save(tmpdir)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="The test needs at least 2 GPUs, skipping")
def test_llm_generate_for_tp2():
config = ModelConfig(llama_model_path)
config.parallel_config.tp_size = 2
llm = LLM(config)
for output in llm.generate(prompts):
print(output)
def test_llm_generate_async(tp_size: int = 1):
config = ModelConfig(llama_model_path)
config.parallel_config.tp_size = tp_size
llm = LLM(
config,
async_mode=True,
# set to 40%, since by default, the executor will occupy all the free memory, making some other tests OOM in CI
kvcahe_free_gpu_memory_fraction=0.4)
def test_async(streaming: bool):
async def task(prompt: str):
outputs = []
async for output in llm.generate_async(prompt, streaming=streaming):
print('output', output)
outputs.append(output.text)
print(' '.join(outputs))
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
def test_wait(streaming: bool):
for prompt in prompts:
future = llm.generate_async(prompt, streaming=streaming)
for output in future:
print('wait', output)
def test_non_streaming_usage_wait():
for prompt in prompts:
output = llm.generate_async(prompt, streaming=False)
print(output.text)
def test_future(streaming: bool):
for prompt in prompts:
future = llm.generate_async(prompt, streaming=streaming)
if streaming is True:
for output in future:
# Do something else and then wait for the result if needed
output = output.wait_completion(timeout=10)
print('future', output.text)
else:
# Do something else and then wait for the result if needed
output = future.wait_completion(timeout=10)
print('future', output.text)
test_async(streaming=True)
test_async(streaming=False)
test_wait(streaming=True)
test_wait(streaming=False)
test_future(streaming=True)
test_future(streaming=False)
test_non_streaming_usage_wait()
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="The test needs at least 2 GPUs, skipping")
def test_llm_generate_async_tp2():
test_llm_generate_async(tp_size=2)
# TODO[chunweiy]: Add test for loading inmemory model
if __name__ == '__main__':
test_llm_generate_async_tp2()