mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: erenup <ping.nie@pku.edu.cn> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
646 lines
28 KiB
Python
646 lines
28 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import random
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from itertools import product
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from parameterized import parameterized
|
|
from transformers import LlamaConfig, LlamaForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Builder
|
|
from tensorrt_llm._utils import str_dtype_to_trt, trt_dtype_to_str
|
|
from tensorrt_llm.models.llama.weight import (load_from_hf_llama,
|
|
load_from_meta_llama)
|
|
from tensorrt_llm.models.modeling_utils import PretrainedConfig
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.llm_data import llm_models_root
|
|
from utils.util import getSMVersion
|
|
|
|
|
|
class TestLLaMA(unittest.TestCase):
|
|
EOS_TOKEN = 2
|
|
PAD_TOKEN = 2
|
|
|
|
def _gen_tensorrt_llm_network(self, network, hf_llama,
|
|
llama_config: LlamaConfig, batch_size,
|
|
beam_width, input_len, output_len, dtype,
|
|
rank, tensor_parallel):
|
|
list(range(tensor_parallel))
|
|
|
|
with net_guard(network):
|
|
str_dtype_to_trt(dtype)
|
|
|
|
config = {
|
|
'architecture': "LlamaForCausalLM",
|
|
'dtype': dtype,
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': llama_config.num_hidden_layers,
|
|
'num_attention_heads': llama_config.num_attention_heads,
|
|
'hidden_size': llama_config.hidden_size,
|
|
'intermediate_size': llama_config.intermediate_size,
|
|
'num_key_value_heads': llama_config.num_key_value_heads,
|
|
'vocab_size': llama_config.vocab_size,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': llama_config.max_position_embeddings,
|
|
'hidden_act': llama_config.hidden_act,
|
|
'rotary_base': getattr(llama_config, 'rotary_base', 10000.0),
|
|
'rotary_scaling': getattr(llama_config, 'rotary_scaling', None),
|
|
'norm_epsilon': llama_config.rms_norm_eps,
|
|
'mapping': {
|
|
'world_size': tensor_parallel,
|
|
'tp_size': tensor_parallel,
|
|
},
|
|
"moe_config": {
|
|
"num_experts": 0,
|
|
"top_k": 0,
|
|
"tp_mode": 2,
|
|
"normalization_mode": 1
|
|
},
|
|
'use_parallel_embedding': False,
|
|
'embedding_sharding_dim': 0,
|
|
'use_prompt_tuning': False,
|
|
'moe_num_experts': 0,
|
|
'moe_top_k': 0,
|
|
'moe_tp_mode': 2,
|
|
'moe_normalization_mode': 1,
|
|
'use_fused_mlp': False,
|
|
'enable_pos_shift': False,
|
|
'dense_context_fmha': False,
|
|
}
|
|
|
|
# Initialize model
|
|
tensorrt_llm_llama = tensorrt_llm.models.LLaMAForCausalLM(
|
|
PretrainedConfig.from_dict(config))
|
|
weights = load_from_hf_llama(tensorrt_llm_llama,
|
|
hf_llama,
|
|
dtype=dtype,
|
|
mapping=tensorrt_llm.Mapping(
|
|
world_size=tensor_parallel,
|
|
rank=rank,
|
|
tp_size=tensor_parallel))
|
|
tensorrt_llm_llama.load(weights)
|
|
# Prepare
|
|
network.set_named_parameters(tensorrt_llm_llama.named_parameters())
|
|
inputs = tensorrt_llm_llama.prepare_inputs(
|
|
max_batch_size=batch_size,
|
|
max_input_len=input_len,
|
|
max_seq_len=input_len + output_len,
|
|
use_cache=True,
|
|
max_beam_width=beam_width)
|
|
# Forward
|
|
tensorrt_llm_llama(**inputs)
|
|
|
|
return network
|
|
|
|
def _gen_tensorrt_llm_engine(self,
|
|
dtype,
|
|
rank,
|
|
world_size,
|
|
llama_config,
|
|
hf_llama,
|
|
model_name,
|
|
use_plugin,
|
|
batch_size,
|
|
beam_width,
|
|
input_len,
|
|
output_len,
|
|
use_refit,
|
|
fast_building=False,
|
|
context_fmha_flag=ContextFMHAType.disabled,
|
|
enable_remove_input_padding=False):
|
|
|
|
builder = Builder()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
builder_config = builder.create_builder_config(
|
|
name=model_name,
|
|
precision=dtype,
|
|
timing_cache='model.cache',
|
|
tensor_parallel=world_size, # TP only
|
|
use_refit=use_refit,
|
|
strongly_typed=(dtype in ["float16", "bfloat16"]),
|
|
)
|
|
network = builder.create_network()
|
|
network.plugin_config.to_legacy_setting()
|
|
if use_plugin:
|
|
network.plugin_config.set_gpt_attention_plugin(dtype)
|
|
if fast_building:
|
|
network.plugin_config.set_gemm_plugin(dtype)
|
|
if enable_remove_input_padding:
|
|
network.plugin_config.enable_remove_input_padding()
|
|
network.plugin_config.set_context_fmha(context_fmha_flag)
|
|
|
|
self._gen_tensorrt_llm_network(network, hf_llama, llama_config,
|
|
batch_size, beam_width, input_len,
|
|
output_len, dtype, rank, world_size)
|
|
|
|
engine_buffer = builder.build_engine(network, builder_config)
|
|
return engine_buffer
|
|
|
|
def _gen_tensorrt_llm_runtime(self,
|
|
log_level,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
llama_config,
|
|
hf_llama,
|
|
model_name,
|
|
use_plugin,
|
|
batch_size,
|
|
beam_width,
|
|
input_len,
|
|
output_len,
|
|
use_refit,
|
|
fast_building=False,
|
|
context_fmha_flag=ContextFMHAType.disabled,
|
|
enable_remove_input_padding=False):
|
|
tensorrt_llm.logger.set_level(log_level)
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
engine_buffer = self._gen_tensorrt_llm_engine(
|
|
dtype, rank, world_size, llama_config, hf_llama, model_name,
|
|
use_plugin, batch_size, beam_width, input_len, output_len,
|
|
use_refit, fast_building, context_fmha_flag,
|
|
enable_remove_input_padding)
|
|
runtime = tensorrt_llm.runtime.generation._Runtime(
|
|
engine_buffer, mapping)
|
|
return runtime, engine_buffer
|
|
|
|
def load_test_cases():
|
|
test_cases = list(
|
|
product([False], [False, True], [
|
|
ContextFMHAType.disabled, ContextFMHAType.enabled,
|
|
ContextFMHAType.enabled_with_fp32_acc
|
|
], [False, True], ['float16'], [0]))
|
|
test_cases.append(
|
|
(False, True, ContextFMHAType.disabled, False, 'bfloat16', 0))
|
|
test_cases.append(
|
|
(False, True, ContextFMHAType.enabled, False, 'float16', 1)) # MQA
|
|
test_cases.append(
|
|
(False, True, ContextFMHAType.disabled, False, 'float32', 0))
|
|
test_cases.append((False, True, ContextFMHAType.disabled, False,
|
|
'bfloat16', 2)) # GQA
|
|
test_cases.append(
|
|
(False, True, ContextFMHAType.enabled, False, 'float16', 2)) # GQA
|
|
test_cases.append((False, True, ContextFMHAType.enabled_with_fp32_acc,
|
|
False, 'float16', 4)) # GQA
|
|
return test_cases
|
|
|
|
def custom_name_func(testcase_func, param_num, param):
|
|
return "%s_%s" % (
|
|
testcase_func.__name__,
|
|
parameterized.to_safe_name("_".join(str(x) for x in param.args)),
|
|
)
|
|
|
|
@parameterized.expand(load_test_cases, name_func=custom_name_func)
|
|
def test_llama(self, use_refit, fast_building, context_fmha_flag,
|
|
enable_remove_input_padding, dtype, num_kv_heads):
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
if getSMVersion() < 80:
|
|
if context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
|
|
pytest.skip(
|
|
"ContextFMHAType with fp32 acc is not supported in pre-ampere architecture"
|
|
)
|
|
if dtype == 'bfloat16':
|
|
pytest.skip(
|
|
"bfloat16 is not supported in pre-ampere architecture")
|
|
|
|
PRECHECKED_GOOD_RANDOM_SEEDS = [1, 4, 5, 8]
|
|
model = 'llama'
|
|
log_level = 'error'
|
|
use_plugin = True # gpt plugin
|
|
batch_size = 4
|
|
beam_width = 1
|
|
input_len = 4
|
|
output_len = 2
|
|
max_seq_len = input_len + output_len
|
|
world_size = 1
|
|
head_size = 32
|
|
rank = 0
|
|
llama_config = LlamaConfig()
|
|
llama_config.hidden_act = 'silu'
|
|
llama_config.num_hidden_layers = 2
|
|
llama_config.max_position_embeddings = 64
|
|
llama_config.vocab_size = 128
|
|
llama_config.num_attention_heads = 2 if num_kv_heads <= 1 else 2 * num_kv_heads
|
|
llama_config.hidden_size = llama_config.num_attention_heads * head_size
|
|
llama_config.intermediate_size = ((
|
|
(llama_config.hidden_size * 4 * 2 // 3) + head_size - 1) //
|
|
head_size) * head_size
|
|
if hasattr(llama_config, "num_key_value_heads"):
|
|
llama_config.num_key_value_heads = num_kv_heads if num_kv_heads != 0 else llama_config.num_attention_heads
|
|
print(llama_config.num_key_value_heads)
|
|
assert (llama_config.num_attention_heads %
|
|
llama_config.num_key_value_heads) == 0
|
|
llama_config.pad_token_id = self.PAD_TOKEN
|
|
llama_config.eos_token_id = self.EOS_TOKEN
|
|
seed_idx = random.randint(0, len(PRECHECKED_GOOD_RANDOM_SEEDS) - 1)
|
|
torch.manual_seed(PRECHECKED_GOOD_RANDOM_SEEDS[seed_idx])
|
|
hf_llama = LlamaForCausalLM(llama_config).cuda()
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
log_level, dtype, world_size, rank, llama_config, hf_llama, model,
|
|
use_plugin, batch_size, beam_width, input_len, output_len,
|
|
use_refit, fast_building, context_fmha_flag,
|
|
enable_remove_input_padding)
|
|
key_value_cache_buffers = []
|
|
head_size = llama_config.hidden_size // llama_config.num_attention_heads
|
|
for i in range(llama_config.num_hidden_layers):
|
|
key_value_cache_buffers.append(
|
|
torch.zeros((
|
|
batch_size,
|
|
2,
|
|
llama_config.num_key_value_heads,
|
|
max_seq_len,
|
|
head_size,
|
|
),
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device='cuda'))
|
|
|
|
# compare context
|
|
step = 0
|
|
ctx_ids = torch.randint(100, (batch_size, input_len)).int().cuda()
|
|
ctx_context_lengths = input_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
ctx_position_ids = torch.tensor(range(input_len),
|
|
dtype=torch.int32).reshape([
|
|
1, input_len
|
|
]).expand([batch_size,
|
|
input_len]).cuda()
|
|
ctx_last_token_ids = ctx_context_lengths.clone()
|
|
ctx_host_request_types = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
|
|
# We need sequence_lengths start as context_lengths for step 0,
|
|
# and it will be added one after each step.
|
|
sequence_length_buffer = ctx_context_lengths.detach().clone()
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_llama.forward(ctx_ids)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
if enable_remove_input_padding:
|
|
ctx_ids = ctx_ids.view([batch_size * input_len])
|
|
ctx_position_ids = ctx_position_ids.view([batch_size * input_len])
|
|
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids, dim=0).int()
|
|
|
|
cache_indirections = [
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
max_seq_len,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda'),
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
max_seq_len,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
] # ping-pong buffers
|
|
|
|
ctx_buffer = {
|
|
'input_ids': ctx_ids,
|
|
'context_lengths': ctx_context_lengths,
|
|
'position_ids': ctx_position_ids,
|
|
'last_token_ids': ctx_last_token_ids,
|
|
'cache_indirection': cache_indirections[0],
|
|
'host_request_types': ctx_host_request_types,
|
|
}
|
|
if enable_remove_input_padding:
|
|
ctx_buffer['host_context_lengths'] = ctx_context_lengths.cpu()
|
|
|
|
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
|
|
|
|
kv_shape = (batch_size, 2, llama_config.num_key_value_heads,
|
|
max_seq_len, head_size)
|
|
for i in range(llama_config.num_hidden_layers):
|
|
ctx_shape[f'past_key_value_{i}'] = kv_shape
|
|
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
|
|
ctx_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[i]
|
|
ctx_buffer[f'host_max_attention_window_size_{i}'] = torch.tensor(
|
|
[max_seq_len], dtype=torch.int32)
|
|
ctx_shape[f'host_max_attention_window_size_{i}'] = (1, )
|
|
ctx_buffer['sequence_length'] = sequence_length_buffer
|
|
ctx_shape['sequence_length'] = ctx_buffer['sequence_length'].shape
|
|
ctx_shape['host_past_key_value_lengths'] = (batch_size, )
|
|
ctx_buffer['host_past_key_value_lengths'] = torch.tensor(
|
|
[0] * batch_size, dtype=torch.int32)
|
|
ctx_shape['host_sink_token_length'] = (1, )
|
|
ctx_buffer['host_sink_token_length'] = torch.tensor([0],
|
|
dtype=torch.int32)
|
|
|
|
context = runtime.ctx_context
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits']
|
|
|
|
np.testing.assert_allclose(ref.to(torch.float32).cpu().numpy(),
|
|
res.to(torch.float32).cpu().numpy(),
|
|
atol=0.12)
|
|
|
|
# compare generation
|
|
step = 1
|
|
step1_id = torch.randint(100, (batch_size, 1)).int().cuda()
|
|
gen_context_lengths = ctx_context_lengths.clone()
|
|
gen_position_ids = torch.ones_like(step1_id).int().cuda() * input_len
|
|
gen_last_token_ids = torch.zeros_like(gen_context_lengths).int().cuda()
|
|
gen_host_request_types = torch.tensor([1] * batch_size,
|
|
dtype=torch.int32)
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_llama.forward(
|
|
step1_id,
|
|
past_key_values=hf_outputs.past_key_values,
|
|
use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
if enable_remove_input_padding:
|
|
step1_id = step1_id.view([batch_size])
|
|
gen_position_ids = gen_position_ids.view([batch_size])
|
|
gen_last_token_ids = torch.ones_like(
|
|
gen_context_lengths).int().cuda()
|
|
gen_last_token_ids = torch.cumsum(gen_last_token_ids, dim=0).int()
|
|
|
|
step1_buffer = {
|
|
'input_ids': step1_id,
|
|
'context_lengths': gen_context_lengths,
|
|
'position_ids': gen_position_ids,
|
|
'last_token_ids': gen_last_token_ids,
|
|
'host_request_types': gen_host_request_types,
|
|
'cache_indirection': cache_indirections[1],
|
|
}
|
|
if enable_remove_input_padding:
|
|
step1_buffer['host_context_lengths'] = gen_context_lengths.cpu()
|
|
|
|
step1_shape = {k: v.shape for k, v in step1_buffer.items()}
|
|
|
|
for i in range(llama_config.num_hidden_layers):
|
|
step1_shape[f'past_key_value_{i}'] = kv_shape
|
|
step1_shape[f'host_max_attention_window_size_{i}'] = (1, )
|
|
step1_shape['sequence_length'] = (batch_size, )
|
|
step1_shape['host_past_key_value_lengths'] = (batch_size, )
|
|
step1_shape['host_sink_token_length'] = (1, )
|
|
for i in range(llama_config.num_hidden_layers):
|
|
step1_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
|
|
step1_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[i]
|
|
step1_buffer[f'host_max_attention_window_size_{i}'] = torch.tensor(
|
|
[max_seq_len], dtype=torch.int32)
|
|
step1_buffer[
|
|
'host_past_key_value_lengths'] = sequence_length_buffer.cpu()
|
|
sequence_length_buffer = torch.add(sequence_length_buffer, step)
|
|
step1_buffer['sequence_length'] = sequence_length_buffer
|
|
step1_buffer['host_sink_token_length'] = torch.tensor([0],
|
|
dtype=torch.int32)
|
|
|
|
context = runtime.context_1
|
|
runtime._set_shape(context, step1_shape)
|
|
runtime._set_buffer(context, step1_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = step1_buffer['logits']
|
|
|
|
np.testing.assert_allclose(ref.to(torch.float32).cpu().numpy(),
|
|
res.to(torch.float32).cpu().numpy(),
|
|
atol=0.12)
|
|
|
|
def get_loader_test_cases():
|
|
test_cases = []
|
|
test_cases.extend(
|
|
list(
|
|
product([
|
|
("llama-7b-hf", "7B"),
|
|
], [
|
|
(1, 0),
|
|
(2, 0),
|
|
(2, 1),
|
|
], [
|
|
-1,
|
|
0,
|
|
1,
|
|
])))
|
|
test_cases.extend(
|
|
list(
|
|
product([
|
|
("llama-7b-4gqa-hf", "7B-4GQA"),
|
|
], [(1, 0), (2, 0), (2, 1), (4, 0), (4, 1)], [-1, 0, 1])))
|
|
test_cases.extend(
|
|
list(
|
|
product([
|
|
("llama-7b-4gqa-hf", "7B-4GQA"),
|
|
], [(8, 0), (8, 7)], [-1, 0, 1])))
|
|
return test_cases
|
|
|
|
def loader_name_func(testcase_func, param_num, param):
|
|
expand_params = lambda params: '_'.join([
|
|
expand_params(x) if isinstance(x, (list, tuple)) else str(x)
|
|
for x in params
|
|
])
|
|
name = expand_params(param.args)
|
|
return "%s_%s" % (
|
|
testcase_func.__name__,
|
|
parameterized.to_safe_name(name),
|
|
)
|
|
|
|
@parameterized.expand(get_loader_test_cases, name_func=loader_name_func)
|
|
def test_loaders(self, paths, tp_info, emb_sharding_dim):
|
|
model_root = llm_models_root()
|
|
if model_root is None:
|
|
pytest.skip("Skipping since real weights are unavailable.")
|
|
model_root = Path(
|
|
model_root,
|
|
"llama-synthetic" if paths[0].find("gqa") >= 0 else "llama-models")
|
|
hf_path = Path(model_root, paths[0])
|
|
meta_path = Path(model_root, paths[1])
|
|
if not hf_path.exists():
|
|
pytest.skip(f"Skipping since the path {hf_path} does not exist.")
|
|
if not meta_path.exists():
|
|
pytest.skip(f"Skipping since the path {meta_path} does not exist.")
|
|
|
|
def print_corner(name, t: np.ndarray):
|
|
if len(t.shape) == 1:
|
|
tl = t[:2]
|
|
br = t[-2:]
|
|
elif len(t.shape) == 2:
|
|
tl = t[:2, :2]
|
|
br = t[-2:, -2:]
|
|
print(name, np.concatenate([tl, br]).flatten())
|
|
|
|
def print_layers(m: tensorrt_llm.models.LLaMAForCausalLM):
|
|
print_corner("vocab", m.vocab_embedding.weight.raw_value)
|
|
print_corner("lm_head", m.lm_head.weight.raw_value)
|
|
print_corner("ln_f", m.ln_f.weight.raw_value)
|
|
print_corner("qkv", m.layers[0].attention.qkv.weight.raw_value)
|
|
print_corner("gate", m.layers[0].mlp.gate.weight.raw_value)
|
|
print_corner("inorm", m.layers[0].input_layernorm.weight.raw_value)
|
|
print(flush=True)
|
|
return
|
|
|
|
import tensorrt as trt
|
|
|
|
tp_size = tp_info[0]
|
|
rank = tp_info[1]
|
|
dtype = "float16"
|
|
use_parallel_embedding = (emb_sharding_dim >= 0)
|
|
embedding_sharding_dim = abs(emb_sharding_dim)
|
|
hf_llama = LlamaForCausalLM.from_pretrained(
|
|
hf_path,
|
|
device_map={
|
|
"model": "cpu",
|
|
"lm_head": "cpu"
|
|
}, # Load to CPU memory
|
|
torch_dtype="auto")
|
|
assert hf_llama.config.torch_dtype == torch.float16
|
|
kv_dtype = trt.float16 if hf_llama.config.torch_dtype == torch.float16 else trt.float32
|
|
max_context_length = 128 # for loader tests this value does not matter
|
|
config = {
|
|
'architecture': "LlamaForCausalLM",
|
|
'dtype': trt_dtype_to_str(kv_dtype),
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': hf_llama.config.num_hidden_layers,
|
|
'num_attention_heads': hf_llama.config.num_attention_heads,
|
|
'hidden_size': hf_llama.config.hidden_size,
|
|
'intermediate_size': hf_llama.config.intermediate_size,
|
|
'num_key_value_heads': hf_llama.config.num_key_value_heads,
|
|
'vocab_size': hf_llama.config.vocab_size,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': hf_llama.config.max_position_embeddings,
|
|
'hidden_act': hf_llama.config.hidden_act,
|
|
'rotary_base': getattr(hf_llama.config, 'rotary_base', 10000.0),
|
|
'rotary_scaling': getattr(hf_llama.config, 'rotary_scaling', None),
|
|
'norm_epsilon': hf_llama.config.rms_norm_eps,
|
|
'mapping': {
|
|
'world_size': tp_size,
|
|
'tp_size': tp_size,
|
|
},
|
|
"moe_config": {
|
|
"num_experts": 0,
|
|
"top_k": 0,
|
|
"tp_mode": 2,
|
|
"normalization_mode": 1
|
|
},
|
|
'use_parallel_embedding': use_parallel_embedding,
|
|
'embedding_sharding_dim': embedding_sharding_dim,
|
|
'use_prompt_tuning': False,
|
|
'moe_num_experts': 0,
|
|
'moe_top_k': 0,
|
|
'moe_tp_mode': 1,
|
|
'moe_normalization_mode': 1,
|
|
'use_fused_mlp': False,
|
|
'enable_pos_shift': False,
|
|
'dense_context_fmha': False,
|
|
}
|
|
cfg = PretrainedConfig.from_dict(config)
|
|
tensorrt_llm_llama_wHF = tensorrt_llm.models.LLaMAForCausalLM(cfg)
|
|
# print_layers(tensorrt_llm_llama_wHF)
|
|
weights_wHF = load_from_hf_llama(tensorrt_llm_llama_wHF,
|
|
hf_llama,
|
|
mapping=tensorrt_llm.Mapping(
|
|
world_size=tp_size,
|
|
rank=rank,
|
|
tp_size=tp_size),
|
|
dtype=dtype)
|
|
tensorrt_llm_llama_wHF.load(weights_wHF)
|
|
# print_layers(tensorrt_llm_llama_wHF)
|
|
|
|
tensorrt_llm_llama_wMETA = tensorrt_llm.models.LLaMAForCausalLM(cfg)
|
|
# print_layers(tensorrt_llm_llama_wMETA)
|
|
weights_wMETA = load_from_meta_llama(meta_path,
|
|
mapping=tensorrt_llm.Mapping(
|
|
world_size=tp_size,
|
|
rank=rank,
|
|
tp_size=tp_size),
|
|
config=cfg)
|
|
tensorrt_llm_llama_wMETA.load(weights_wMETA)
|
|
# print_layers(tensorrt_llm_llama_wMETA)
|
|
# token embedding
|
|
|
|
np.testing.assert_allclose(
|
|
weights_wHF['transformer.vocab_embedding.weight'],
|
|
weights_wMETA['transformer.vocab_embedding.weight'],
|
|
atol=1e-3)
|
|
# output
|
|
np.testing.assert_allclose(weights_wHF['lm_head.weight'],
|
|
weights_wMETA['lm_head.weight'],
|
|
atol=1e-3)
|
|
# norm
|
|
np.testing.assert_allclose(weights_wHF['transformer.ln_f.weight'],
|
|
weights_wMETA['transformer.ln_f.weight'],
|
|
atol=1e-3)
|
|
# Checking all of the layers takes too much time, just check one random layer
|
|
l = np.random.randint(0, hf_llama.config.num_hidden_layers)
|
|
# for l in range(tensorrt_llm_llama_wHF.num_layers):
|
|
tllm_prefix = 'transformer.layers.{}.'.format(l)
|
|
if l >= 0:
|
|
print(f"Checking Layer-{l} weights ...", flush=True)
|
|
# layer{l}.input_layernorm
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'input_layernorm.weight'],
|
|
weights_wMETA[tllm_prefix + 'input_layernorm.weight'],
|
|
atol=1e-3)
|
|
# layer{l}.post_layernorm
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'post_layernorm.weight'],
|
|
weights_wMETA[tllm_prefix + 'post_layernorm.weight'],
|
|
atol=1e-3)
|
|
# layer{l}.mlp.gate
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'mlp.gate.weight'],
|
|
weights_wMETA[tllm_prefix + 'mlp.gate.weight'],
|
|
atol=1e-3)
|
|
# layer{l}.mlp.proj
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'mlp.proj.weight'],
|
|
weights_wMETA[tllm_prefix + 'mlp.proj.weight'],
|
|
atol=1e-3)
|
|
# layer{l}.mlp.fc
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'mlp.fc.weight'],
|
|
weights_wMETA[tllm_prefix + 'mlp.fc.weight'],
|
|
atol=1e-3)
|
|
# layer{l}.dense
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'attention.dense.weight'],
|
|
weights_wMETA[tllm_prefix + 'attention.dense.weight'],
|
|
atol=1e-3)
|
|
# layer{l}.qkv
|
|
np.testing.assert_allclose(
|
|
weights_wHF[tllm_prefix + 'attention.qkv.weight'],
|
|
weights_wMETA[tllm_prefix + 'attention.qkv.weight'],
|
|
atol=1e-3)
|
|
return
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|