| .. |
|
attention_backend
|
[feat] Piecewise cuda graph support for MLA (#4467)
|
2025-06-17 18:58:38 +08:00 |
|
auto_deploy
|
feature: unify new_tokens format sample state to trtllm sampler new_tokens format (#4401)
|
2025-06-23 10:38:37 -07:00 |
|
compilation
|
[feat] Piecewise cuda graph support for MLA (#4467)
|
2025-06-17 18:58:38 +08:00 |
|
custom_ops
|
feat: Misc Opt for large scale EP (#5374)
|
2025-06-20 13:11:31 +08:00 |
|
distributed
|
Feat/ds r1 min latency opt round3, add router gemm, fused a gemm, PDL (#4560)
|
2025-06-14 17:36:22 +08:00 |
|
models
|
fix: refactor and fix mtp vanilla (#4762)
|
2025-06-20 05:23:39 +08:00 |
|
modules
|
feat: Misc Opt for large scale EP (#5374)
|
2025-06-20 13:11:31 +08:00 |
|
peft
|
feat: support multi lora adapters and TP (#3885)
|
2025-05-08 23:45:45 +08:00 |
|
pyexecutor
|
[fix] Add 1 and draft_token_num to seq_len when overlap scheduling is enabled during memory estimation (#5343)
|
2025-06-24 11:43:43 +08:00 |
|
speculative
|
feature: unify new_tokens format sample state to trtllm sampler new_tokens format (#4401)
|
2025-06-23 10:38:37 -07:00 |
|
__init__.py
|
[TRTLLM-5208][BREAKING CHANGE] chore: make pytorch LLM the default (#5312)
|
2025-06-20 03:01:10 +08:00 |
|
autotuner.py
|
[TRTLLM-5770] feat: Integrate TRT-LLM Gen FP8 block scale MoE with Pytorch workflow kernel autotuner (#5207)
|
2025-06-17 21:01:56 +08:00 |
|
expert_statistic.py
|
feat: large-scale EP(part 5: Static EP load balancer with offline statistics) (#4695)
|
2025-06-02 01:25:02 +08:00 |
|
llm.py
|
[TRTLLM-5208][BREAKING CHANGE] chore: make pytorch LLM the default (#5312)
|
2025-06-20 03:01:10 +08:00 |
|
metadata.py
|
feat: no-cache attention in PyTorch workflow (#3085)
|
2025-04-05 01:54:32 +08:00 |
|
model_config.py
|
[TRTLLM-5825][fix] Fix torch LoRA TP (#5338)
|
2025-06-19 09:12:00 +03:00 |
|
utils.py
|
feat: Enhance AutoTuner inference path and code readability (#4466)
|
2025-06-04 10:53:11 +08:00 |