TensorRT-LLMs/examples/gptj/convert_checkpoint.py
Kaiyu Xie 0ab9d17a59
Update TensorRT-LLM (#1055)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-06 18:38:07 +08:00

380 lines
14 KiB
Python

import argparse
import json
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Dict, Optional, Tuple
import safetensors
import torch
from transformers import AutoModelForCausalLM, GPTJConfig, GPTJForCausalLM
import tensorrt_llm
from tensorrt_llm.mapping import Mapping
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--vocab_size', type=int, default=50400)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=28)
parser.add_argument('--n_head', type=int, default=16)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--norm_eps', type=float, default=1e-05)
parser.add_argument('--rotary_dim', type=int, default=64)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
def load_gptj_config(model_dir: str) -> GPTJConfig:
""" Helper utility to load GPTJConfig.
A pretrained checkpoint from modeling_RW.py has a different structure
and is not compatible with `transformers.GPTJConfig` and
`transformers.GPTJModel`. We need to manually set the config values.
"""
config = GPTJConfig.from_pretrained(model_dir)
return config
def split(weight: torch.Tensor,
tp_size: int,
rank: int = 0,
dim: int = 0) -> torch.Tensor:
if tp_size == 1:
return weight
elif weight.ndim == 1:
return torch.chunk(weight, tp_size)[rank].contiguous()
else:
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
dim: int) -> torch.Tensor:
return split(weight, tp_size, rank, dim=dim)
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.weight' not in params:
return None
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.bias' not in params:
return None
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> Tuple[torch.Tensor]:
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
def get_tllm_linear_weight(
weight: torch.Tensor,
prefix: str,
bias: Optional[torch.Tensor] = None,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[f'{prefix}.weight'] = processed_torch_weights
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
else:
results[f'{prefix}.weight'] = weight.contiguous()
if bias is not None:
results[f'{prefix}.bias'] = bias
return results
def get_tllm_param(
param: torch.Tensor,
name: str,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if name.endswith('.weight') and use_weight_only:
v = param.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[name] = processed_torch_weights
results[name.replace('weight',
'per_channel_scale')] = torch_weight_scales
else:
results[name] = param
return results
def convert_hf_gptj(hf_model: GPTJForCausalLM,
hf_config: GPTJConfig,
mapping: Mapping,
dtype: str = 'float32',
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8):
weights = {}
tik = time.time()
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, dtype)
num_hidden_layers = hf_config.num_hidden_layers
layers_range = mapping.pp_layers(num_hidden_layers)
for l in layers_range:
prefix = f'transformer.h.{l}'
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
# Attention QKV (no bias)
q_weight = get_weight(model_params, f'{prefix}.attn.q_proj', dtype)
k_weight = get_weight(model_params, f'{prefix}.attn.k_proj', dtype)
v_weight = get_weight(model_params, f'{prefix}.attn.v_proj', dtype)
q_w = split_matrix(q_weight, mapping.tp_size, mapping.tp_rank, dim=0)
k_w = split_matrix(k_weight, mapping.tp_size, mapping.tp_rank, dim=0)
v_w = split_matrix(v_weight, mapping.tp_size, mapping.tp_rank, dim=0)
qkv_w = torch.concatenate([q_w, k_w, v_w], dim=0)
weights.update(
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv', None,
use_weight_only,
plugin_weight_only_quant_type))
# Attention dense (not bias)
attn_dense_weight = get_weight(model_params, f'{prefix}.attn.out_proj',
dtype)
attn_dense_w = split_matrix(attn_dense_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(attn_dense_w, f'{tllm_prex}.attention.dense',
None, use_weight_only,
plugin_weight_only_quant_type))
# MLP fc_in (with bias)
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.fc_in', dtype)
mlp_fc_w = split_matrix(mlp_fc_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
mlp_fc_b = split_matrix(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc', mlp_fc_b,
use_weight_only,
plugin_weight_only_quant_type))
# MLP fc_out (with bias)
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.fc_out', dtype)
mlp_proj_w = split_matrix(mlp_proj_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
# Only rank0 will get bias
if mapping.tp_size > 1 and mapping.tp_rank > 0:
mlp_proj_bias = torch.zeros(mlp_proj_weight.shape[0],
dtype=mlp_proj_weight.dtype)
weights.update(
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.ln_1', dtype)
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
if mapping.is_first_pp_rank():
# Embedding
embed_w = get_weight(model_params, 'transformer.wte', dtype)
weights['transformer.vocab_embedding.weight'] = embed_w
if mapping.is_last_pp_rank():
# lm_head weight and bias
lm_head_w, ln_head_bias = get_weight_and_bias(model_params, 'lm_head',
dtype)
weights['lm_head.weight'] = split_matrix(lm_head_w,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights['lm_head.bias'] = split_matrix(ln_head_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
dtype)
# ln_f weight and bias
weights['transformer.ln_f.weight'] = ln_f_w
if ln_f_b is not None:
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
def main():
# TODO(qijun): Currently, the convert script depends on a torch op:
# torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix,
# which is included in tensorrt_llm Python package. Otherwise, the convert
# script does not need to import tensorrt_llm. Will remove it after reimplementing
# the op with PyTorch.
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
quant_algo = None
plugin_weight_only_quant_type = None
if args.use_weight_only and args.weight_only_precision == 'int8':
plugin_weight_only_quant_type = torch.int8
quant_algo = 'W8A16'
elif args.use_weight_only and args.weight_only_precision == 'int4':
plugin_weight_only_quant_type = torch.quint4x2
quant_algo = 'W4A16'
if args.model_dir is not None:
hf_config = load_gptj_config(args.model_dir)
architecture = hf_config.architectures[0]
args.vocab_size = hf_config.vocab_size
args.n_positions = hf_config.max_position_embeddings
args.n_layer = hf_config.num_hidden_layers
args.n_head = hf_config.num_attention_heads
args.n_embd = hf_config.hidden_size
args.norm_eps = hf_config.layer_norm_epsilon
args.rotary_dim = hf_config.rotary_dim
else:
architecture = "GPTJForCausalLM"
config = {
'architecture': architecture,
'dtype': args.dtype,
'num_hidden_layers': args.n_layer,
'num_attention_heads': args.n_head,
'hidden_size': args.n_embd,
'norm_epsilon': args.norm_eps,
'vocab_size': args.vocab_size,
'position_embedding_type': 'rope_gptj',
'max_position_embeddings': args.n_positions,
'hidden_act': 'gelu',
'quantization': {
'quant_algo': quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'rotary_dim': args.rotary_dim,
}
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
if args.model_dir is None:
return
def covert_and_save(rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
hf_model = AutoModelForCausalLM.from_pretrained(args.model_dir,
trust_remote_code=True,
torch_dtype="auto")
weights = convert_hf_gptj(
hf_model,
hf_config,
mapping,
dtype=args.dtype,
use_weight_only=args.use_weight_only,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
del hf_model
safetensors.torch.save_file(
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
if args.workers == 1:
for rank in range(world_size):
covert_and_save(rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank) for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()