TensorRT-LLMs/cpp/tensorrt_llm/plugins/smoothQuantGemmPlugin/smoothQuantGemmPlugin.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

431 lines
15 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "smoothQuantGemmPlugin.h"
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/int8SQ.h"
#include <numeric>
using namespace nvinfer1;
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels::cutlass_kernels;
using tensorrt_llm::plugins::SmoothQuantGemmPluginCreator;
using tensorrt_llm::plugins::SmoothQuantGemmPlugin;
using tensorrt_llm::plugins::SmoothQuantGemmPluginProfiler;
using tensorrt_llm::plugins::read;
using tensorrt_llm::plugins::write;
static char const* SQ_GEMM_PLUGIN_VERSION{"1"};
static char const* SQ_GEMM_PLUGIN_NAME{"SmoothQuantGemm"};
PluginFieldCollection SmoothQuantGemmPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> SmoothQuantGemmPluginCreator::mPluginAttributes;
void SmoothQuantGemmPluginProfiler::runTactic(int m, int n, int k, SmoothQuantGemmPluginProfiler::Config const& tactic,
char* workspace, cudaStream_t const& stream)
{
int8_t* aTmp = reinterpret_cast<int8_t*>(workspace);
int8_t* bTmp = nextWorkspacePtr(aTmp, m * k * sizeof(int8_t));
void* cTmp = reinterpret_cast<void*>(nextWorkspacePtr(bTmp, n * k * sizeof(int8_t)));
float* alphaRowTmp = reinterpret_cast<float*>(
nextWorkspacePtr(reinterpret_cast<int8_t*>(cTmp), m * n * (mType == nvinfer1::DataType::kFLOAT ? 4 : 2)));
float* alphaColTmp
= reinterpret_cast<float*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(alphaRowTmp), m * sizeof(float)));
char* workspaceTmp
= reinterpret_cast<char*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(alphaColTmp), n * sizeof(float)));
int const wsSize = mRunner->getWorkspaceSize(m, n, k);
mRunner->gemm(
aTmp, bTmp, mQuantMode, alphaColTmp, alphaRowTmp, cTmp, m, n, k, tactic, workspaceTmp, wsSize, stream);
}
void SmoothQuantGemmPluginProfiler::computeTmpSize(size_t maxM, size_t n, size_t k)
{
std::vector<size_t> workspaces = {
maxM * k * sizeof(int8_t), // A
n * k * sizeof(int8_t), // B
maxM * n * (mType == nvinfer1::DataType::kFLOAT ? 4u : 2u), // C
maxM * sizeof(float), // alphaRow
n * sizeof(float), // alphaCol
mRunner->getWorkspaceSize(maxM, n, k) // workspace
};
size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
setTmpWorkspaceSizeInBytes(bytes);
}
std::vector<SmoothQuantGemmPluginProfiler::Config> SmoothQuantGemmPluginProfiler::getTactics(int m, int n, int k) const
{
return mRunner->getConfigs();
}
SmoothQuantGemmPlugin::SmoothQuantGemmPlugin(
QuantMode quantMode, nvinfer1::DataType type, SmoothQuantGemmPlugin::PluginProfilerPtr const& pluginProfiler)
: mQuantMode(quantMode)
, mPluginProfiler(pluginProfiler)
{
init(type);
}
// Parameterized constructor
SmoothQuantGemmPlugin::SmoothQuantGemmPlugin(
void const* data, size_t length, SmoothQuantGemmPlugin::PluginProfilerPtr const& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
nvinfer1::DataType type;
unsigned int quantMode;
read(d, quantMode);
read(d, type);
read(d, mDims);
mQuantMode = QuantMode(quantMode);
init(type);
mPluginProfiler->deserialize(d, mDims, mGemmId);
TLLM_CHECK_WITH_INFO(d == a + length,
"Expected length (%d) != real length (%d). This is often "
"caused by using different TensorRT-LLM version to build "
"engine and run engine.",
(int) length, (int) (d - a));
}
void SmoothQuantGemmPlugin::init(nvinfer1::DataType type)
{
mType = type;
if (mType == nvinfer1::DataType::kHALF)
{
m_sqGemmRunner = std::make_shared<CutlassInt8GemmRunner<half>>();
}
else if (mType == nvinfer1::DataType::kFLOAT)
{
m_sqGemmRunner = std::make_shared<CutlassInt8GemmRunner<float>>();
}
else if (mType == nvinfer1::DataType::kINT32)
{
m_sqGemmRunner = std::make_shared<CutlassInt8GemmRunner<int32_t>>();
}
#ifdef ENABLE_BF16
else if (mType == nvinfer1::DataType::kBF16)
{
m_sqGemmRunner = std::make_shared<CutlassInt8GemmRunner<__nv_bfloat16>>();
}
#endif
mPluginProfiler->setQuantMode(mQuantMode);
mGemmId = GemmIdCore(mDims.n, mDims.k, mType);
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* SmoothQuantGemmPlugin::clone() const noexcept
{
auto* plugin = new SmoothQuantGemmPlugin(*this);
return plugin;
}
nvinfer1::DimsExprs SmoothQuantGemmPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
try
{
TLLM_CHECK(nbInputs == 4);
TLLM_CHECK(outputIndex == 0);
int const nbDimsA = inputs[0].nbDims;
TLLM_CHECK(nbDimsA >= 2);
DimsExprs ret;
ret.nbDims = nbDimsA;
for (int ii = 0; ii < nbDimsA - 1; ++ii)
{
ret.d[ii] = inputs[0].d[ii];
}
ret.d[nbDimsA - 1] = inputs[1].d[0];
return ret;
}
catch (std::exception const& e)
{
caughtError(e);
}
return DimsExprs{};
}
bool SmoothQuantGemmPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
switch (pos)
{
case 0:
// activation
return inOut[pos].type == nvinfer1::DataType::kINT8 && inOut[pos].format == TensorFormat::kLINEAR;
case 1:
// weights
// Weights stored in checkpoint must have int8 type
return inOut[pos].type == nvinfer1::DataType::kINT8 && inOut[pos].format == TensorFormat::kLINEAR;
case 2:
// scales channels
case 3:
// scales tokens
return inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format == TensorFormat::kLINEAR;
case 4:
// out
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
default:
// Never should be here
assert(false);
return false;
}
}
void SmoothQuantGemmPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
auto const minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies<int>());
auto const maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies<int>());
int const maxK = in[0].max.d[in[0].max.nbDims - 1];
int const maxN = in[1].max.d[0];
int const minK = in[0].min.d[in[0].min.nbDims - 1];
int const minN = in[1].min.d[0];
TLLM_CHECK_WITH_INFO(minN == maxN, "Variable out channels is not allowed");
TLLM_CHECK_WITH_INFO(minK == maxK, "Variable in channels is not allowed");
if (!mDims.isInitialized())
{
mDims = {minM, maxM, maxN, maxK};
}
mGemmId = {maxN, maxK, mType};
m_workspaceMaxSize = m_sqGemmRunner->getWorkspaceSize(maxM, maxN, maxK);
}
size_t SmoothQuantGemmPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
return m_workspaceMaxSize;
}
int SmoothQuantGemmPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
// inputs
// mat1 [M(*), K]
// mat2 [N, K]
// scale_tokens [M, 1] if has_per_token_scaling else [1, 1]
// scale_channels [1, N] if has_per_channel_scaling else [1, 1]
// outputs
// mat [M(*), N]
int64_t m64 = 1;
for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii)
{
m64 *= inputDesc[0].dims.d[ii];
}
int const m = TLLM_INT32_CAST(m64);
int const n = TLLM_INT32_CAST(inputDesc[1].dims.d[0]);
int const k = TLLM_INT32_CAST(inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]);
int const wsSize = m_sqGemmRunner->getWorkspaceSize(m, n, k);
if (m <= 4)
{
tensorrt_llm::kernels::smooth_quant::Params params(reinterpret_cast<int8_t const*>(inputs[0]),
reinterpret_cast<int8_t const*>(inputs[1]), reinterpret_cast<float const*>(inputs[2]),
reinterpret_cast<float const*>(inputs[3]), reinterpret_cast<void*>(outputs[0]), m, n, k, mQuantMode);
if (mType == nvinfer1::DataType::kHALF)
{
tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<half>(params, stream);
}
else if (mType == nvinfer1::DataType::kFLOAT)
{
tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<float>(params, stream);
}
#ifdef ENABLE_BF16
else if (mType == nvinfer1::DataType::kBF16)
{
tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<__nv_bfloat16>(params, stream);
}
#endif
else if (mType == nvinfer1::DataType::kINT32)
{
tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<int>(params, stream);
}
}
else
{
auto const& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId);
TLLM_CHECK_WITH_INFO(bestTactic, "No valid SQ GEMM tactic");
m_sqGemmRunner->gemm(reinterpret_cast<int8_t const*>(inputs[0]), reinterpret_cast<int8_t const*>(inputs[1]),
mQuantMode, reinterpret_cast<float const*>(inputs[3]), reinterpret_cast<float const*>(inputs[2]),
reinterpret_cast<void*>(outputs[0]), m, n, k, *bestTactic, reinterpret_cast<char*>(workspace), wsSize,
stream);
}
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType SmoothQuantGemmPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK(index == 0);
return mType;
}
// IPluginV2 Methods
char const* SmoothQuantGemmPlugin::getPluginType() const noexcept
{
return SQ_GEMM_PLUGIN_NAME;
}
char const* SmoothQuantGemmPlugin::getPluginVersion() const noexcept
{
return SQ_GEMM_PLUGIN_VERSION;
}
int SmoothQuantGemmPlugin::getNbOutputs() const noexcept
{
return 1;
}
int SmoothQuantGemmPlugin::initialize() noexcept
{
configGemm();
return 0;
}
void SmoothQuantGemmPlugin::terminate() noexcept {}
size_t SmoothQuantGemmPlugin::getSerializationSize() const noexcept
{
return sizeof(unsigned int) + // QuantMode
sizeof(nvinfer1::DataType) + // dtype
sizeof(mDims) + // Dimensions
mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size
}
void SmoothQuantGemmPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mQuantMode.value());
write(d, mType);
write(d, mDims);
mPluginProfiler->serialize(d, mGemmId);
TLLM_CHECK(d == a + getSerializationSize());
}
void SmoothQuantGemmPlugin::destroy() noexcept
{
// This gets called when the network containing plugin is destroyed
delete this;
}
void SmoothQuantGemmPlugin::configGemm()
{
mPluginProfiler->profileTactics(m_sqGemmRunner, mType, mDims, mGemmId);
}
///////////////
SmoothQuantGemmPluginCreator::SmoothQuantGemmPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("has_per_channel_scaling", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("has_per_token_scaling", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32, 1));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* SmoothQuantGemmPluginCreator::getPluginName() const noexcept
{
return SQ_GEMM_PLUGIN_NAME;
}
char const* SmoothQuantGemmPluginCreator::getPluginVersion() const noexcept
{
return SQ_GEMM_PLUGIN_VERSION;
}
PluginFieldCollection const* SmoothQuantGemmPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* SmoothQuantGemmPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
bool perTokenScaling{};
bool perChannelScaling{};
nvinfer1::DataType type{};
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "has_per_channel_scaling"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
perChannelScaling = static_cast<bool>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "has_per_token_scaling"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
perTokenScaling = static_cast<bool>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
}
try
{
// SmoothQuantGemmPluginCreator is unique and shared for an engine generation
// Create plugin profiler with shared tactics map
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false);
QuantMode quantMode = QuantMode::fromDescription(true, true, perTokenScaling, perChannelScaling);
auto* obj = new SmoothQuantGemmPlugin(quantMode, type, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* SmoothQuantGemmPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call SmoothQuantGemmPlugin::destroy()
try
{
// Create plugin profiler with private tactics map which is read from the serialized engine
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true);
auto* obj = new SmoothQuantGemmPlugin(serialData, serialLength, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}