mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
223 lines
7.6 KiB
C++
223 lines
7.6 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/layerProfiler.h"
|
|
#include "tensorrt_llm/runtime/rawEngine.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
#include <NvInferRuntime.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
class TllmRuntime
|
|
{
|
|
public:
|
|
using TensorMap = StringPtrMap<ITensor>;
|
|
|
|
explicit TllmRuntime(RawEngine const& rawEngine, nvinfer1::ILogger* logger, float gpuWeightsPercent = 1.0f,
|
|
bool useShapeInference = true);
|
|
|
|
SizeType32 getNbContexts() const
|
|
{
|
|
return static_cast<SizeType32>(mContexts.size());
|
|
}
|
|
|
|
nvinfer1::IExecutionContext& getContext(SizeType32 contextIndex) const
|
|
{
|
|
return *mContexts.at(contextIndex);
|
|
}
|
|
|
|
SizeType32 getNbProfiles() const
|
|
{
|
|
return static_cast<SizeType32>(mEngine->getNbOptimizationProfiles());
|
|
}
|
|
|
|
/// @brief If multiple TensorRT optimization profiles are built in the engine, this function selects the
|
|
/// corresponding profile that is going to be used based on the runtime shape, for now, TensorRT-LLM only split
|
|
/// multiple profiles on the num_tokens dimension, hence the profile index is selected based on which profile
|
|
/// handles the actual num_tokens
|
|
/// @return The index of the selected TensorRT optimization profile
|
|
[[nodiscard]] SizeType32 getOptProfileId(int numTokens, std::vector<SizeType32> const& splitPoints) const
|
|
{
|
|
if (getNbProfiles() == 1)
|
|
{
|
|
return 0;
|
|
}
|
|
auto const it = std::lower_bound(splitPoints.begin(), splitPoints.end(), numTokens);
|
|
auto const optProfileId = std::distance(splitPoints.begin(), it);
|
|
return optProfileId;
|
|
}
|
|
|
|
nvinfer1::IExecutionContext& addContext(std::int32_t profileIndex);
|
|
|
|
void clearContexts();
|
|
|
|
/// @brief Set input tensors from tensorMap for all contexts.
|
|
/// @details The function can be used to set static input tensors for all iterations. If a tensor was set this way,
|
|
/// it doesn't need to included in calls to setInputTensors anymore.
|
|
void setStaticInputTensors(TensorMap const& tensorMap);
|
|
|
|
/// @brief Set input tensors from tensorMap for context at contextIndex.
|
|
/// @details The function expects that all input tensors (excluding the ones set by setStaticInputTensors) are
|
|
/// contained in the tensorMap. If a tensor is missing, has a bad shape or type, it will throw.
|
|
void setInputTensors(SizeType32 contextIndex, TensorMap const& tensorMap);
|
|
|
|
/// @brief Set output tensors from tensorMap for context at contextIndex.
|
|
/// @details The function expects that all output tensors are contained in the tensorMap. If a tensor is missing and
|
|
/// shape inference is enabled, it will allocate the tensor on GPU and insert it into the tensorMap. Otherwise it
|
|
/// will throw.
|
|
void setOutputTensors(SizeType32 contextIndex, TensorMap& tensorMap);
|
|
|
|
bool executeContext(SizeType32 contextIndex) const;
|
|
|
|
CudaStream const& getStream() const;
|
|
|
|
BufferManager::CudaStreamPtr getStreamPtr()
|
|
{
|
|
return mStream;
|
|
}
|
|
|
|
nvinfer1::ICudaEngine& getEngine()
|
|
{
|
|
return *mEngine;
|
|
}
|
|
|
|
nvinfer1::ICudaEngine const& getEngine() const
|
|
{
|
|
return *mEngine;
|
|
}
|
|
|
|
nvinfer1::IEngineInspector& getEngineInspector()
|
|
{
|
|
return *mEngineInspector;
|
|
}
|
|
|
|
nvinfer1::IEngineInspector const& getEngineInspector() const
|
|
{
|
|
return *mEngineInspector;
|
|
}
|
|
|
|
BufferManager& getBufferManager()
|
|
{
|
|
return mBufferManager;
|
|
}
|
|
|
|
BufferManager const& getBufferManager() const
|
|
{
|
|
return mBufferManager;
|
|
}
|
|
|
|
void setLayerProfiler();
|
|
bool hasLayerProfiler(SizeType32 contextId) const;
|
|
std::string getLayerProfileInfo() const;
|
|
void reportToProfiler(SizeType32 contextId);
|
|
void loadManagedWeights(RawEngine const& rawEngine, int localRank);
|
|
void initializeUserBuffer(tensorrt_llm::runtime::WorldConfig const& world_config, SizeType32 maxBatchSize,
|
|
SizeType32 maxBeamWidth, SizeType32 maxSequenceLength, SizeType32 hiddenSize,
|
|
std::optional<SizeType32> maxNumTokens);
|
|
|
|
bool isUserBufferEnabled() const
|
|
{
|
|
return mUserBufferEnabled;
|
|
}
|
|
|
|
private:
|
|
void cacheTensorNames();
|
|
|
|
void setInputTensorsImpl(SizeType32 contextIndex, TensorMap const& tensorMap, bool throwOnMiss);
|
|
|
|
void setUserBufferTensors(SizeType32 contextIndex, TensorMap& tensorMap);
|
|
|
|
void printEngineInfo();
|
|
|
|
void printContextInfo(SizeType32 contextIndex);
|
|
|
|
// Tool functions for `printEngineInfo()`.
|
|
static std::string shapeToString(nvinfer1::Dims64 const& dim)
|
|
{
|
|
std::string output("(");
|
|
if (dim.nbDims == 0)
|
|
{
|
|
return output + ")";
|
|
}
|
|
for (int i = 0; i < dim.nbDims - 1; ++i)
|
|
{
|
|
output += std::to_string(dim.d[i]) + ", ";
|
|
}
|
|
output += std::to_string(dim.d[dim.nbDims - 1]) + ")";
|
|
return output;
|
|
}
|
|
|
|
static std::string dataTypeToString(nvinfer1::DataType type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case nvinfer1::DataType::kINT64: return "INT64";
|
|
case nvinfer1::DataType::kINT32: return "INT32";
|
|
case nvinfer1::DataType::kFLOAT: return "FP32";
|
|
case nvinfer1::DataType::kBF16: return "BF16";
|
|
case nvinfer1::DataType::kHALF: return "FP16";
|
|
case nvinfer1::DataType::kBOOL: return "BOOL";
|
|
case nvinfer1::DataType::kUINT8: return "UINT8";
|
|
case nvinfer1::DataType::kINT8: return "INT8";
|
|
case nvinfer1::DataType::kFP8: return "FP8";
|
|
case nvinfer1::DataType::kINT4: return "INT4";
|
|
case nvinfer1::DataType::kFP4: return "FP4";
|
|
default: return "UNKNOWN";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static std::string alignText(
|
|
std::string const& text, int const width, bool const bCenter = true, char const blank = ' ')
|
|
{
|
|
int textLen = text.size();
|
|
int padLeft = 0;
|
|
int padRight = 0;
|
|
padLeft = bCenter ? (width - textLen) / 2 : 0;
|
|
padRight = width - padLeft - textLen;
|
|
return std::string(padLeft, blank) + text + std::string(padRight, blank);
|
|
}
|
|
|
|
BufferManager::CudaStreamPtr mStream;
|
|
BufferManager mBufferManager;
|
|
std::unique_ptr<nvinfer1::IRuntime> mRuntime;
|
|
std::unique_ptr<nvinfer1::ICudaEngine> mEngine;
|
|
BufferManager::IBufferPtr mEngineBuffer;
|
|
std::vector<std::unique_ptr<nvinfer1::IExecutionContext>> mContexts;
|
|
std::unique_ptr<ITensor> mDummyTensor;
|
|
std::unique_ptr<nvinfer1::IEngineInspector> mEngineInspector;
|
|
std::unique_ptr<LayerProfiler> mLayerProfiler;
|
|
bool mUseShapeInference;
|
|
TensorMap mManagedWeightsMap;
|
|
// List of input tensor names.
|
|
// Names of static tensors are removed from this list when setStaticInputTensors is called.
|
|
std::vector<std::string> mInputTensorNames;
|
|
std::vector<std::string> mOutputTensorNames;
|
|
|
|
bool mUserBufferEnabled;
|
|
};
|
|
} // namespace tensorrt_llm::runtime
|