TensorRT-LLMs/tests/quantization/test_quant.py
2024-11-05 16:27:06 +08:00

201 lines
8.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from parameterized import parameterized
from tensorrt_llm.layers import (Attention, ColumnLinear, GatedMLP, RmsNorm,
RowLinear)
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import (GPTForCausalLM, LLaMAConfig, LLaMAForCausalLM,
PretrainedConfig)
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
# isort: off
from tensorrt_llm.quantization.layers import (
Fp8RowwiseAttention, Fp8RowwiseGatedMLP, Fp8RowwiseRmsNorm,
SmoothQuantAttention, SmoothQuantLayerNorm, SmoothQuantMLP,
WeightOnlyQuantColumnLinear, WeightOnlyQuantRowLinear)
# isort: on
from tensorrt_llm.quantization.quantize import quantize
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import unittest_name_func
class TestQuant(unittest.TestCase):
def test_weight_only_quant(self):
quant_algo = QuantAlgo.W8A16
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': 2,
'num_attention_heads': 12,
'hidden_size': 768,
'vocab_size': 51200,
'max_position_embeddings': 1024,
'hidden_act': 'relu',
}
config = PretrainedConfig.from_dict(config)
model = GPTForCausalLM(config)
quant_model = quantize(model, QuantConfig(quant_algo))
self.assertTrue(hasattr(quant_model, 'quant_mode'))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.dense,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.fc,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].attention.dense,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].mlp.fc,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[1].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(isinstance(quant_model.lm_head, ColumnLinear))
def test_weight_only_quant_exclude_modules(self):
quant_algo = QuantAlgo.W8A16
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': 1,
'num_attention_heads': 12,
'hidden_size': 768,
'vocab_size': 51200,
'max_position_embeddings': 1024,
'hidden_act': 'relu',
}
config = PretrainedConfig.from_dict(config)
model = GPTForCausalLM(config)
quant_model = quantize(
model,
QuantConfig(quant_algo,
exclude_modules=[
'fc', 'dense', 'vocab_embedding',
'position_embedding', 'block_embedding'
]))
self.assertTrue(hasattr(quant_model, 'quant_mode'))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.qkv,
WeightOnlyQuantColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].attention.dense,
RowLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.fc, ColumnLinear))
self.assertTrue(
isinstance(quant_model.transformer.layers[0].mlp.proj,
WeightOnlyQuantRowLinear))
self.assertTrue(
isinstance(quant_model.lm_head, WeightOnlyQuantColumnLinear))
def test_convert_GPT_to_smooth_quant(self):
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': 1,
'num_attention_heads': 1,
'hidden_size': 128,
'vocab_size': 1024,
'max_position_embeddings': 256,
'hidden_act': 'gelu',
}
config = PretrainedConfig.from_dict(config)
model = GPTForCausalLM(config)
quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
quant_config = QuantConfig(quant_algo)
quant_model = quantize(model, quant_config)
for layer in quant_model.transformer.layers:
assert isinstance(layer.input_layernorm, SmoothQuantLayerNorm)
assert isinstance(layer.post_layernorm, SmoothQuantLayerNorm)
assert isinstance(layer.mlp, SmoothQuantMLP)
assert isinstance(layer.attention, SmoothQuantAttention)
assert quant_model.quant_mode == quant_config.quant_mode
@parameterized.expand([(False, 1, 0), (True, 1, 0), (False, 2, 0),
(False, 2, 1), (True, 2, 0), (True, 2, 1)],
name_func=unittest_name_func)
def test_fp8_rowwise_quant(self, use_meta_recipe: bool, world_size: int,
rank: int):
mapping = Mapping(rank=rank, pp_size=world_size, world_size=world_size)
config = LLaMAConfig(architecture='LlamaForCausalLM',
dtype='float16',
hidden_size=128,
num_hidden_layers=16,
num_attention_heads=16,
vocab_size=1024,
hidden_act='silu',
position_embedding_type='rope_gpt_neox',
max_position_embeddings=256,
mapping=mapping)
model = LLaMAForCausalLM(config)
quant_algo = QuantAlgo.FP8_PER_CHANNEL_PER_TOKEN
quant_config = QuantConfig(quant_algo, use_meta_recipe=use_meta_recipe)
quant_model = quantize(model, quant_config)
local_num_hidden_layers = len(quant_model.transformer.layers)
for local_layer_idx, layer in enumerate(quant_model.transformer.layers):
assert layer.layer_idx == local_layer_idx + rank * local_num_hidden_layers
if use_meta_recipe and (layer.layer_idx == 0
or layer.layer_idx == 15):
assert isinstance(layer.input_layernorm, RmsNorm)
assert isinstance(layer.attention, Attention)
assert isinstance(layer.post_layernorm, RmsNorm)
assert isinstance(layer.mlp, GatedMLP)
elif use_meta_recipe:
assert isinstance(layer.input_layernorm, RmsNorm)
assert isinstance(layer.attention, Attention)
assert isinstance(layer.post_layernorm, Fp8RowwiseRmsNorm)
assert isinstance(layer.mlp, Fp8RowwiseGatedMLP)
else:
assert isinstance(layer.input_layernorm, Fp8RowwiseRmsNorm)
assert isinstance(layer.attention, Fp8RowwiseAttention)
assert isinstance(layer.post_layernorm, Fp8RowwiseRmsNorm)
assert isinstance(layer.mlp, Fp8RowwiseGatedMLP)
assert quant_model.quant_mode == quant_config.quant_mode
if __name__ == '__main__':
unittest.main()