mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
165 lines
6.0 KiB
Python
165 lines
6.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Parameter, Tensor
|
|
from tensorrt_llm.quantization.functional import smooth_quant_rms_norm
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from itertools import product
|
|
|
|
from utils.util import create_session, run_session, unittest_name_func
|
|
|
|
|
|
class TestSmoothQuantRmsNorm(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand(
|
|
[
|
|
combo for combo in product(
|
|
['float16', 'bfloat16', 'float32'], # dtypes
|
|
[False, True], # use_plugin
|
|
[True, False], # dynamic_act_scaling
|
|
[True, False] # sum_per_token
|
|
)
|
|
], # Skip when dynamic_act_scaling=False and sum_per_token=True
|
|
name_func=unittest_name_func)
|
|
def test_smooth_quant_rms_norm(self, dtype, use_plugin, dynamic_act_scaling,
|
|
sum_per_token):
|
|
|
|
if sum_per_token and not dynamic_act_scaling:
|
|
# Create builder
|
|
builder = tensorrt_llm.Builder()
|
|
# Create empty network
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
# Should fail
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"sum_per_token is only allowed if dynamic_act_scaling is enabled!"
|
|
):
|
|
smooth_quant_rms_norm(
|
|
None,
|
|
None,
|
|
dynamic_act_scaling=dynamic_act_scaling,
|
|
sum_per_token=sum_per_token)
|
|
return
|
|
|
|
test_shape = [2, 5, 10, 10]
|
|
|
|
x_data = torch.randn(
|
|
*test_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device="cuda")
|
|
|
|
m = LlamaRMSNorm(
|
|
test_shape[-1]).cuda() # LlamaRMSNorm only supports last dim
|
|
|
|
scale_data = torch.randint(2,
|
|
32, (1, ),
|
|
dtype=torch.float32,
|
|
device="cuda")
|
|
|
|
with torch.no_grad():
|
|
|
|
def cast_to_int8_with_sat(tensor):
|
|
return tensor.round().clip(-128, 127).to(dtype=torch.int8)
|
|
|
|
# pytorch run
|
|
with torch.no_grad():
|
|
ref = m(x_data).to(dtype=torch.float32)
|
|
if dynamic_act_scaling:
|
|
abs_max_f, _ = ref.abs().max(dim=-1, keepdim=True)
|
|
dynamic_scale = abs_max_f / 127.0
|
|
ref_quantized = cast_to_int8_with_sat(ref *
|
|
(127.0 / abs_max_f))
|
|
if sum_per_token:
|
|
ref_sums = ref.sum(dim=-1, keepdim=True)
|
|
|
|
else:
|
|
ref_quantized = cast_to_int8_with_sat(ref * scale_data)
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
builder.strongly_typed = False # Test need to run in weekly typed mode
|
|
network = builder.create_network()
|
|
if use_plugin:
|
|
network.plugin_config.rmsnorm_quantization_plugin = dtype
|
|
with tensorrt_llm.net_guard(network):
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = smooth_quant_rms_norm(
|
|
x,
|
|
test_shape[-1],
|
|
weight=tensorrt_llm.constant(m.weight.detach().cpu().numpy()),
|
|
scale=Parameter(scale_data.cpu().numpy()).value,
|
|
eps=m.variance_epsilon,
|
|
dynamic_act_scaling=dynamic_act_scaling,
|
|
sum_per_token=sum_per_token,
|
|
)
|
|
|
|
if dynamic_act_scaling:
|
|
if sum_per_token:
|
|
output, dynamic_scales, sums = output
|
|
sums.mark_output('sums', 'float32')
|
|
else:
|
|
output, dynamic_scales = output
|
|
|
|
dynamic_scales.mark_output('dynamic_scales', 'float32')
|
|
|
|
output.mark_output('output', 'int8')
|
|
|
|
session = create_session(builder, network, precision=dtype, int8=True)
|
|
inputs = {
|
|
'x': x_data,
|
|
}
|
|
|
|
outputs = run_session(session, inputs)
|
|
|
|
# compare diff of quantized output
|
|
# Set absolute tolerance to 1 to mitigate some rounding error
|
|
torch.testing.assert_close(ref_quantized,
|
|
outputs['output'],
|
|
atol=1,
|
|
rtol=0)
|
|
|
|
# compare diff of dynamic activation scales
|
|
if dynamic_act_scaling:
|
|
torch.testing.assert_close(dynamic_scale,
|
|
outputs['dynamic_scales'],
|
|
atol=1e-1,
|
|
rtol=1e-1)
|
|
|
|
if sum_per_token:
|
|
torch.testing.assert_close(ref_sums,
|
|
outputs['sums'],
|
|
atol=1e-1,
|
|
rtol=1e-1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|