TensorRT-LLMs/cpp/tensorrt_llm/thop/CMakeLists.txt
Simeng Liu 873c7532fd
feat: Add group_rms_norm kernel to normalize multiple inputs in a single operator. (#3438)
* feat: Add group_rms_norm kernel to normalize multiple inputs in a single operator.

Previously, the RMSNorm implementation only supported a single input tensor. With group_rms_norm, multiple tensors can be normalized together:
```python
input_a, input_b, ... = group_rms_norm([input_a, input_b, ...])
```
All input tensors must share the same batch dimension. The kernel partitions work by dynamically assigning warp groups proportional to the last dimension of each input, improving launch efficiency and reducing overhead.

This MR provides two implementations:
GroupRMSNormKernel: Optimized for small-to-medium batch sizes
GroupRMSNormKernelLargeBatch: Contains additional optimizations for large batch sizes

Both kernels are currently exposed as custom PyTorch ops. A future MR will implement heuristic-based kernel selection and expose a unified interface.

Signed-off-by: Simeng Liu <simengl@nvidia.com>

* Resolve comments and fix typo with IS_FLASHINFER_AVAILABLE

Signed-off-by: Simeng Liu <simengl@nvidia.com>

---------

Signed-off-by: Simeng Liu <simengl@nvidia.com>
2025-05-02 13:25:30 +08:00

96 lines
2.9 KiB
CMake

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &
# AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations under
# the License.
if(NOT WIN32)
# additional warnings
#
# Ignore overloaded-virtual warning. We intentionally change parameters of
# some methods in derived class.
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall")
if(WARNING_IS_ERROR)
message(STATUS "Treating warnings as errors in GCC compilation")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Werror")
endif()
else() # Windows
# warning level 4
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /W4")
endif()
add_library(th_utils STATIC thUtils.cpp)
set_property(TARGET th_utils PROPERTY POSITION_INDEPENDENT_CODE ON)
set_property(TARGET th_utils PROPERTY CUDA_RESOLVE_DEVICE_SYMBOLS ON)
target_link_libraries(th_utils PUBLIC ${TORCH_LIBRARIES} ${CUBLAS_LIB}
${CURAND_LIB})
add_library(
th_common SHARED
allgatherOp.cpp
allreduceOp.cpp
attentionOp.cpp
convertSpecDecodingMaskToPackedMaskOp.cpp
cutlassScaledMM.cpp
cublasScaledMM.cpp
deepseekAllreduceFusionOp.cpp
dynamicDecodeOp.cpp
fmhaPackMaskOp.cpp
fp8Op.cpp
fp4Op.cpp
fp4Gemm.cpp
fp4GemmTrtllmGen.cpp
fp8BatchedGemmTrtllmGen.cpp
fp4Quantize.cpp
fp4BatchedQuantize.cpp
fp8BlockScalingGemm.cpp
fp8Quantize.cpp
fusedTopkSoftmax.cpp
gatherTreeOp.cpp
groupRmsNormOp.cpp
logitsBitmaskOp.cpp
mambaConv1dOp.cpp
moeOp.cpp
moeCommOp.cpp
fp8BlockScaleMoe.cpp
fp4BlockScaleMoe.cpp
noAuxTcOp.cpp
ncclCommunicatorOp.cpp
parallelDecodeKVCacheUpdateOp.cpp
redrafterCurandOp.cpp
reducescatterOp.cpp
relativeAttentionBiasOp.cpp
selectiveScanOp.cpp
userbuffersFinalizeOp.cpp
userbuffersTensor.cpp
weightOnlyQuantOp.cpp
mtpOp.cpp
loraOp.cpp)
set_property(TARGET th_common PROPERTY POSITION_INDEPENDENT_CODE ON)
target_link_libraries(th_common PRIVATE ${TORCH_LIBRARIES} th_utils
${Python3_LIBRARIES} ${SHARED_TARGET})
if(ENABLE_MULTI_DEVICE)
target_include_directories(th_common PUBLIC ${MPI_C_INCLUDE_DIRS})
target_link_libraries(th_common PRIVATE ${MPI_C_LIBRARIES} ${NCCL_LIB}
CUDA::nvml)
endif()
if(NOT WIN32)
set_target_properties(
th_common
PROPERTIES LINK_FLAGS
"-Wl,-rpath='$ORIGIN' ${AS_NEEDED_FLAG} ${UNDEFINED_FLAG}")
else()
target_link_libraries(th_common PRIVATE context_attention_src)
endif()