mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
77 lines
2.7 KiB
Python
77 lines
2.7 KiB
Python
import pytest
|
|
|
|
from tensorrt_llm._tensorrt_engine import LLM
|
|
from tensorrt_llm.llmapi import KvCacheConfig, SamplingParams
|
|
from tensorrt_llm.llmapi.llm_utils import CalibConfig, QuantAlgo, QuantConfig
|
|
|
|
# isort: off
|
|
from .test_llm import cnn_dailymail_path, llama_model_path, get_model_path
|
|
from utils.util import skip_blackwell, skip_pre_blackwell, skip_pre_hopper
|
|
# isort: on
|
|
|
|
|
|
@skip_blackwell
|
|
def test_llm_int4_awq_quantization():
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ)
|
|
assert quant_config.quant_mode.has_any_quant()
|
|
calib_config = CalibConfig(calib_dataset=cnn_dailymail_path)
|
|
|
|
llm = LLM(llama_model_path,
|
|
quant_config=quant_config,
|
|
calib_config=calib_config)
|
|
|
|
sampling_params = SamplingParams(max_tokens=6)
|
|
for output in llm.generate(["A B C"], sampling_params=sampling_params):
|
|
print(output)
|
|
assert output.outputs[0].text == "D E F G H I"
|
|
|
|
|
|
@skip_pre_hopper
|
|
def test_llm_fp8_quantization():
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.FP8,
|
|
kv_cache_quant_algo=QuantAlgo.FP8)
|
|
assert quant_config.quant_mode.has_any_quant()
|
|
calib_config = CalibConfig(calib_dataset=cnn_dailymail_path)
|
|
|
|
llm = LLM(llama_model_path,
|
|
quant_config=quant_config,
|
|
calib_config=calib_config)
|
|
sampling_params = SamplingParams(max_tokens=6)
|
|
for output in llm.generate(["A B C"], sampling_params=sampling_params):
|
|
print(output)
|
|
assert output.outputs[0].text == "D E F G H I"
|
|
|
|
|
|
@skip_pre_blackwell
|
|
def test_llm_nvfp4_quantization():
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.NVFP4,
|
|
kv_cache_quant_algo=QuantAlgo.FP8)
|
|
assert quant_config.quant_mode.has_any_quant()
|
|
calib_config = CalibConfig(calib_dataset=cnn_dailymail_path)
|
|
|
|
llm = LLM(llama_model_path,
|
|
quant_config=quant_config,
|
|
calib_config=calib_config)
|
|
sampling_params = SamplingParams(max_tokens=6)
|
|
for output in llm.generate(["A B C"], sampling_params=sampling_params):
|
|
print(output)
|
|
assert output.outputs[0].text == "D E F G H I"
|
|
|
|
|
|
@skip_pre_hopper
|
|
@pytest.mark.skip("https://nvbugs/5027953")
|
|
def test_llm_fp8_quantization_modelOpt_ckpt():
|
|
llama_fp8_model_path = get_model_path(
|
|
"llama-3.1-model/Llama-3.1-8B-Instruct-FP8")
|
|
llm = LLM(llama_fp8_model_path,
|
|
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4))
|
|
sampling_params = SamplingParams(max_tokens=6)
|
|
for output in llm.generate(["A B C"], sampling_params=sampling_params):
|
|
print(output)
|
|
assert output.outputs[0].text == " D E F G H I"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_llm_int4_awq_quantization()
|
|
test_llm_fp8_quantization_modelOpt_ckpt()
|