mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
358 lines
15 KiB
Plaintext
358 lines
15 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
|
|
#include "tensorrt_llm/layers/topPSamplingLayer.h"
|
|
|
|
#include <algorithm>
|
|
#include <float.h>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace layers
|
|
{
|
|
|
|
static __global__ void setTopPRuntimeArgs(int batchSize, uint32_t topK, uint32_t* topKs, int topKsSize, float topP,
|
|
float* topPs, int topPsSize, bool* skipDecode, const int* batchSlots, float* initialTopPBuf)
|
|
{
|
|
/**
|
|
* @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
|
|
and top_k to top_ks.
|
|
*/
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (int bi = index; bi < batchSize; bi += gridDim.x * blockDim.x)
|
|
{
|
|
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
|
|
std::uint32_t k = topKsSize > 1 ? topKs[batchSlot] : topK;
|
|
float p = topPsSize > 1 ? topPs[batchSlot] : topP;
|
|
if (k == 0 && p == 0.0f)
|
|
{
|
|
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
|
|
// equivalent to greedy search. So, we set the topk = 1 as an alternative
|
|
// solution.
|
|
k = 1;
|
|
}
|
|
topKs[batchSlot] = k;
|
|
topPs[batchSlot] = p;
|
|
skipDecode[batchSlot] = k > 0;
|
|
|
|
initialTopPBuf[batchSlot] = topPs[batchSlot];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::allocateBuffer(size_t batchSize)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
if (mIsDeterministic)
|
|
{
|
|
invokeTopPSampling<T>(nullptr, // workspace
|
|
mSamplingWorkspaceSize, mCubTempStorageSize,
|
|
nullptr, // output_ids
|
|
nullptr, // sequence_length
|
|
nullptr, // finished_input_buffer
|
|
nullptr, // finished_output_buffer
|
|
nullptr, // cum_log_probs
|
|
nullptr, // output_log_probs
|
|
nullptr, // log_probs
|
|
mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, nullptr, batchSize, mMaxBatchSize,
|
|
mVocabSizePadded, nullptr, 0.f, mStream, nullptr, nullptr);
|
|
}
|
|
else
|
|
{
|
|
invokeAirTopPSampling<T>(nullptr, mSamplingWorkspaceSize,
|
|
nullptr, // output_ids
|
|
nullptr, // sequence_length
|
|
nullptr, // finished_input_buffer
|
|
nullptr, // finished_output_buffer
|
|
nullptr, // cum_log_probs
|
|
nullptr, // output_log_probs
|
|
nullptr, // log_probs)
|
|
nullptr, batchSize, mMaxBatchSize, mVocabSizePadded, nullptr, 0.f, mStream, mAirTopPBlockNum, nullptr,
|
|
nullptr);
|
|
}
|
|
|
|
std::array<size_t, 11> deviceBufferSizes;
|
|
deviceBufferSizes[0] = sizeof(int32_t) * batchSize * mVocabSizePadded;
|
|
deviceBufferSizes[1] = sizeof(int32_t) * (batchSize + 1);
|
|
deviceBufferSizes[2] = sizeof(int32_t) * (batchSize + 1);
|
|
deviceBufferSizes[3] = sizeof(uint32_t) * batchSize;
|
|
deviceBufferSizes[4] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[5] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[6] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[7] = sizeof(float) * batchSize;
|
|
deviceBufferSizes[8] = sizeof(int32_t) * batchSize;
|
|
deviceBufferSizes[9] = sizeof(bool) * batchSize;
|
|
deviceBufferSizes[10] = *std::max_element(&deviceBufferSizes[3], &deviceBufferSizes[9]);
|
|
|
|
mTopPIdValsDevice = mAllocator->reMalloc(mTopPIdValsDevice, deviceBufferSizes[0], false);
|
|
mTopPOffsetDevice = mAllocator->reMalloc(mTopPOffsetDevice, deviceBufferSizes[1], false);
|
|
mBeginTopPOffsetDevice = mAllocator->reMalloc(mBeginTopPOffsetDevice, deviceBufferSizes[2], false);
|
|
mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[3], false);
|
|
mRuntimeTopPDevice = mAllocator->reMalloc(mRuntimeTopPDevice, deviceBufferSizes[4], false);
|
|
mInitialTopPDevice = mAllocator->reMalloc(mInitialTopPDevice, deviceBufferSizes[5], false);
|
|
mTopPDecayDevice = mAllocator->reMalloc(mTopPDecayDevice, deviceBufferSizes[6], false);
|
|
mTopPMinDevice = mAllocator->reMalloc(mTopPMinDevice, deviceBufferSizes[7], false);
|
|
mTopPResetIdsDevice = mAllocator->reMalloc(mTopPResetIdsDevice, deviceBufferSizes[8], false);
|
|
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[9], false);
|
|
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[10], false);
|
|
|
|
mSkipDecodeHost = (bool*) std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize);
|
|
std::fill(mSkipDecodeHost, mSkipDecodeHost + batchSize, true);
|
|
|
|
mAllocatedSize = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
|
|
TLLM_LOG_DEBUG("topPSamplingLayer allocated %lu bytes on GPU", mAllocatedSize);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::freeBuffer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
mAllocator->free((void**) (&mTopPIdValsDevice));
|
|
mAllocator->free((void**) (&mTopPOffsetDevice));
|
|
mAllocator->free((void**) (&mBeginTopPOffsetDevice));
|
|
mAllocator->free((void**) (&mRuntimeTopKDevice));
|
|
mAllocator->free((void**) (&mRuntimeTopPDevice));
|
|
mAllocator->free((void**) (&mInitialTopPDevice));
|
|
mAllocator->free((void**) (&mTopPDecayDevice));
|
|
mAllocator->free((void**) (&mTopPMinDevice));
|
|
mAllocator->free((void**) (&mTopPResetIdsDevice));
|
|
mAllocator->free((void**) (&mSkipDecodeDevice));
|
|
mAllocator->free((void**) (&mSetupWorkspaceDevice));
|
|
std::free(mSkipDecodeHost);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::setup(size_t const batchSize, int32_t const* batchSlots, SetupParams const& setupParams)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
|
|
uint32_t const defaultTopK = 0;
|
|
auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector<uint32_t>{defaultTopK});
|
|
auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector<float>{});
|
|
|
|
size_t const runtimeTopKSize = runtimeTopK.size();
|
|
size_t const runtimeTopPSize = runtimeTopP.size();
|
|
|
|
float const defaultTopPDecay{1.0f};
|
|
auto decayVec = setupParams.top_p_decay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
|
|
|
|
float const defaultTopPMin{1e-6f}; // prevent topp becoming 0.0
|
|
auto topPMinVec = setupParams.top_p_min.value_or(std::vector<float>(batchSize, defaultTopPMin));
|
|
|
|
int32_t const defaultTopPResetId{-1};
|
|
auto topPResetIdsVec = setupParams.top_p_reset_ids.value_or(std::vector<int32_t>(batchSize, defaultTopPResetId));
|
|
|
|
if (runtimeTopPSize == 0)
|
|
{
|
|
for (size_t bi = 0; bi < batchSize; ++bi)
|
|
{
|
|
int32_t bid = bi;
|
|
if (batchSlots)
|
|
{
|
|
bid = batchSlots[bi];
|
|
}
|
|
mSkipDecodeHost[bid] = true;
|
|
}
|
|
cudaAutoCpy(mSkipDecodeDevice, mSkipDecodeHost, mMaxBatchSize, mStream);
|
|
return;
|
|
}
|
|
|
|
for (auto& topP : runtimeTopP)
|
|
{
|
|
if (topP < 0.f || topP > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
|
|
topP = std::clamp(topP, 0.f, 1.f);
|
|
}
|
|
}
|
|
|
|
for (auto& decay : decayVec)
|
|
{
|
|
if (decay <= 0.f || decay > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("Decay (%f) is out of range ([0.0, 1.0f]). Change to 1.0.", decay);
|
|
decay = 1.0f;
|
|
}
|
|
}
|
|
|
|
for (auto& topPMin : topPMinVec)
|
|
{
|
|
if (topPMin <= 0.f || topPMin > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP min (%f) is out of range ([0.0, 1.0f]). Change to 0.5.", topPMin);
|
|
topPMin = 0.5f;
|
|
}
|
|
}
|
|
|
|
uint32_t const topK = runtimeTopK.at(0);
|
|
float const topP = runtimeTopP.at(0);
|
|
|
|
if (runtimeTopKSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
|
|
fmtstr("runtimeTopK.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopK.size(), batchSize));
|
|
cudaAutoCpy(reinterpret_cast<uint32_t*>(mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(
|
|
reinterpret_cast<uint32_t*>(mSetupWorkspaceDevice), mRuntimeTopKDevice, batchSlots, batchSize, mStream);
|
|
}
|
|
if (runtimeTopPSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
|
|
fmtstr("runtime_top_p.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopP.size(), batchSize));
|
|
cudaAutoCpy(reinterpret_cast<float*>(mSetupWorkspaceDevice), runtimeTopP.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(
|
|
reinterpret_cast<float*>(mSetupWorkspaceDevice), mRuntimeTopPDevice, batchSlots, batchSize, mStream);
|
|
}
|
|
|
|
auto fillBuffers
|
|
= [this, &batchSize, &batchSlots](std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(vector.size() == batchSize,
|
|
fmtstr("%s.size() (%lu) == batchSize (%lu) is not satisfied!", name.c_str(), vector.size(), batchSize));
|
|
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, mStream);
|
|
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlots, batchSize, mStream);
|
|
};
|
|
|
|
fillBuffers("top_p_decay", decayVec, reinterpret_cast<float*>(mSetupWorkspaceDevice), mTopPDecayDevice);
|
|
|
|
fillBuffers("top_p_min", topPMinVec, reinterpret_cast<float*>(mSetupWorkspaceDevice), mTopPMinDevice);
|
|
|
|
fillBuffers(
|
|
"top_p_reset_ids", topPResetIdsVec, reinterpret_cast<int32_t*>(mSetupWorkspaceDevice), mTopPResetIdsDevice);
|
|
|
|
{
|
|
dim3 block(std::min((int) batchSize, 256));
|
|
dim3 grid(divUp((int) batchSize, (int) block.x));
|
|
setTopPRuntimeArgs<<<grid, block, 0, mStream>>>(batchSize, topK, mRuntimeTopKDevice, runtimeTopKSize, topP,
|
|
mRuntimeTopPDevice, runtimeTopPSize, mSkipDecodeDevice, batchSlots, mInitialTopPDevice);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream);
|
|
std::vector<float> runtimeTopPs(mMaxBatchSize);
|
|
cudaAutoCpy(runtimeTopPs.data(), mRuntimeTopPDevice, mMaxBatchSize, mStream);
|
|
{
|
|
float maxTopP = 0.f;
|
|
for (size_t bi = 0; bi < batchSize; ++bi)
|
|
{
|
|
int32_t bid = bi;
|
|
if (batchSlots)
|
|
{
|
|
bid = batchSlots[bi];
|
|
}
|
|
maxTopP = std::max(maxTopP, runtimeTopPs[bid]);
|
|
}
|
|
mRuntimeMaxTopP = std::max(mRuntimeMaxTopP, maxTopP);
|
|
}
|
|
|
|
if (!mIsDeterministic)
|
|
{
|
|
int smCnt = mCudaDeviceProp->multiProcessorCount;
|
|
mAirTopPBlockNum = calcAirTopPBlockNum<T, int, float>(batchSize, (int) mVocabSizePadded, smCnt);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TopPSamplingLayer<T>::forward(DecodingOutputParams& outputs, ForwardParams& inputs)
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
|
|
auto const batchSize = inputs.logits.shape[0];
|
|
|
|
// Probabilities must be already computed instead of logits
|
|
auto probs = inputs.logits.template getPtr<T>();
|
|
auto endIds = inputs.end_ids.template getPtr<const int>();
|
|
auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<const int>() : nullptr;
|
|
auto curandStatesDevice = inputs.curand_states;
|
|
auto samplingWorkspaceDevice = inputs.sampling_workspace;
|
|
|
|
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
|
|
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
|
|
|
|
if (mIsDeterministic)
|
|
{
|
|
invokeTopPInitialize(
|
|
mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, batchSize, mVocabSizePadded, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
FinishedState* finishedInput = (inputs.finished)
|
|
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
FinishedState* finishedOutput = (outputs.finished)
|
|
? reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>())
|
|
: nullptr;
|
|
|
|
float* cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : nullptr;
|
|
float* outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>() : nullptr;
|
|
int* sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<int>() : nullptr;
|
|
|
|
if (mIsDeterministic)
|
|
{
|
|
invokeBatchTopPSampling<T>(samplingWorkspaceDevice, mSamplingWorkspaceSize, mCubTempStorageSize,
|
|
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
|
|
outputLogProbs, probs, mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, curandStatesDevice,
|
|
batchSize, mMaxBatchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, mRuntimeTopPDevice, mStream,
|
|
mSkipDecodeDevice, batchSlots);
|
|
sync_check_cuda_error();
|
|
invokeComputeToppDecay(mRuntimeTopPDevice, mInitialTopPDevice,
|
|
outputs.output_ids_ptr.template getPtr<const int*>(), mTopPDecayDevice, mTopPMinDevice, mTopPResetIdsDevice,
|
|
sequenceLength, batchSlots, batchSize, mStream);
|
|
sync_check_cuda_error();
|
|
}
|
|
else
|
|
{
|
|
invokeBatchAirTopPSampling<T>(samplingWorkspaceDevice, mSamplingWorkspaceSize,
|
|
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
|
|
outputLogProbs, probs, curandStatesDevice, batchSize, mMaxBatchSize, mVocabSizePadded, endIds,
|
|
mRuntimeMaxTopP, mRuntimeTopPDevice, mStream, mAirTopPBlockNum, mSkipDecodeDevice, batchSlots);
|
|
sync_check_cuda_error();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
TopPSamplingLayer<T>::TopPSamplingLayer(std::size_t maxBatchSize, std::size_t vocabSize, std::size_t vocabSizePadded,
|
|
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop, bool isDeterministic)
|
|
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), prop)
|
|
, mIsDeterministic(isDeterministic)
|
|
{
|
|
allocateBuffer(mMaxBatchSize);
|
|
}
|
|
|
|
template <typename T>
|
|
TopPSamplingLayer<T>::~TopPSamplingLayer()
|
|
{
|
|
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
|
|
freeBuffer();
|
|
}
|
|
|
|
template class TopPSamplingLayer<float>;
|
|
template class TopPSamplingLayer<half>;
|
|
|
|
} // namespace layers
|
|
} // namespace tensorrt_llm
|