TensorRT-LLMs/cpp/tensorrt_llm/layers/topPSamplingLayer.cu
Kaiyu Xie eb8f26c7e4
Update TensorRT-LLM (#1122)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-21 21:30:55 +08:00

358 lines
15 KiB
Plaintext

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include <algorithm>
#include <float.h>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
namespace tensorrt_llm
{
namespace layers
{
static __global__ void setTopPRuntimeArgs(int batchSize, uint32_t topK, uint32_t* topKs, int topKsSize, float topP,
float* topPs, int topPsSize, bool* skipDecode, const int* batchSlots, float* initialTopPBuf)
{
/**
* @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
and top_k to top_ks.
*/
int index = blockIdx.x * blockDim.x + threadIdx.x;
for (int bi = index; bi < batchSize; bi += gridDim.x * blockDim.x)
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
std::uint32_t k = topKsSize > 1 ? topKs[batchSlot] : topK;
float p = topPsSize > 1 ? topPs[batchSlot] : topP;
if (k == 0 && p == 0.0f)
{
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
// equivalent to greedy search. So, we set the topk = 1 as an alternative
// solution.
k = 1;
}
topKs[batchSlot] = k;
topPs[batchSlot] = p;
skipDecode[batchSlot] = k > 0;
initialTopPBuf[batchSlot] = topPs[batchSlot];
}
}
template <typename T>
void TopPSamplingLayer<T>::allocateBuffer(size_t batchSize)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
if (mIsDeterministic)
{
invokeTopPSampling<T>(nullptr, // workspace
mSamplingWorkspaceSize, mCubTempStorageSize,
nullptr, // output_ids
nullptr, // sequence_length
nullptr, // finished_input_buffer
nullptr, // finished_output_buffer
nullptr, // cum_log_probs
nullptr, // output_log_probs
nullptr, // log_probs
mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, nullptr, batchSize, mMaxBatchSize,
mVocabSizePadded, nullptr, 0.f, mStream, nullptr, nullptr);
}
else
{
invokeAirTopPSampling<T>(nullptr, mSamplingWorkspaceSize,
nullptr, // output_ids
nullptr, // sequence_length
nullptr, // finished_input_buffer
nullptr, // finished_output_buffer
nullptr, // cum_log_probs
nullptr, // output_log_probs
nullptr, // log_probs)
nullptr, batchSize, mMaxBatchSize, mVocabSizePadded, nullptr, 0.f, mStream, mAirTopPBlockNum, nullptr,
nullptr);
}
std::array<size_t, 11> deviceBufferSizes;
deviceBufferSizes[0] = sizeof(int32_t) * batchSize * mVocabSizePadded;
deviceBufferSizes[1] = sizeof(int32_t) * (batchSize + 1);
deviceBufferSizes[2] = sizeof(int32_t) * (batchSize + 1);
deviceBufferSizes[3] = sizeof(uint32_t) * batchSize;
deviceBufferSizes[4] = sizeof(float) * batchSize;
deviceBufferSizes[5] = sizeof(float) * batchSize;
deviceBufferSizes[6] = sizeof(float) * batchSize;
deviceBufferSizes[7] = sizeof(float) * batchSize;
deviceBufferSizes[8] = sizeof(int32_t) * batchSize;
deviceBufferSizes[9] = sizeof(bool) * batchSize;
deviceBufferSizes[10] = *std::max_element(&deviceBufferSizes[3], &deviceBufferSizes[9]);
mTopPIdValsDevice = mAllocator->reMalloc(mTopPIdValsDevice, deviceBufferSizes[0], false);
mTopPOffsetDevice = mAllocator->reMalloc(mTopPOffsetDevice, deviceBufferSizes[1], false);
mBeginTopPOffsetDevice = mAllocator->reMalloc(mBeginTopPOffsetDevice, deviceBufferSizes[2], false);
mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[3], false);
mRuntimeTopPDevice = mAllocator->reMalloc(mRuntimeTopPDevice, deviceBufferSizes[4], false);
mInitialTopPDevice = mAllocator->reMalloc(mInitialTopPDevice, deviceBufferSizes[5], false);
mTopPDecayDevice = mAllocator->reMalloc(mTopPDecayDevice, deviceBufferSizes[6], false);
mTopPMinDevice = mAllocator->reMalloc(mTopPMinDevice, deviceBufferSizes[7], false);
mTopPResetIdsDevice = mAllocator->reMalloc(mTopPResetIdsDevice, deviceBufferSizes[8], false);
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[9], false);
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[10], false);
mSkipDecodeHost = (bool*) std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize);
std::fill(mSkipDecodeHost, mSkipDecodeHost + batchSize, true);
mAllocatedSize = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
TLLM_LOG_DEBUG("topPSamplingLayer allocated %lu bytes on GPU", mAllocatedSize);
}
template <typename T>
void TopPSamplingLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
mAllocator->free((void**) (&mTopPIdValsDevice));
mAllocator->free((void**) (&mTopPOffsetDevice));
mAllocator->free((void**) (&mBeginTopPOffsetDevice));
mAllocator->free((void**) (&mRuntimeTopKDevice));
mAllocator->free((void**) (&mRuntimeTopPDevice));
mAllocator->free((void**) (&mInitialTopPDevice));
mAllocator->free((void**) (&mTopPDecayDevice));
mAllocator->free((void**) (&mTopPMinDevice));
mAllocator->free((void**) (&mTopPResetIdsDevice));
mAllocator->free((void**) (&mSkipDecodeDevice));
mAllocator->free((void**) (&mSetupWorkspaceDevice));
std::free(mSkipDecodeHost);
}
template <typename T>
void TopPSamplingLayer<T>::setup(size_t const batchSize, int32_t const* batchSlots, SetupParams const& setupParams)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
uint32_t const defaultTopK = 0;
auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector<uint32_t>{defaultTopK});
auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector<float>{});
size_t const runtimeTopKSize = runtimeTopK.size();
size_t const runtimeTopPSize = runtimeTopP.size();
float const defaultTopPDecay{1.0f};
auto decayVec = setupParams.top_p_decay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
float const defaultTopPMin{1e-6f}; // prevent topp becoming 0.0
auto topPMinVec = setupParams.top_p_min.value_or(std::vector<float>(batchSize, defaultTopPMin));
int32_t const defaultTopPResetId{-1};
auto topPResetIdsVec = setupParams.top_p_reset_ids.value_or(std::vector<int32_t>(batchSize, defaultTopPResetId));
if (runtimeTopPSize == 0)
{
for (size_t bi = 0; bi < batchSize; ++bi)
{
int32_t bid = bi;
if (batchSlots)
{
bid = batchSlots[bi];
}
mSkipDecodeHost[bid] = true;
}
cudaAutoCpy(mSkipDecodeDevice, mSkipDecodeHost, mMaxBatchSize, mStream);
return;
}
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& decay : decayVec)
{
if (decay <= 0.f || decay > 1.0f)
{
TLLM_LOG_WARNING("Decay (%f) is out of range ([0.0, 1.0f]). Change to 1.0.", decay);
decay = 1.0f;
}
}
for (auto& topPMin : topPMinVec)
{
if (topPMin <= 0.f || topPMin > 1.0f)
{
TLLM_LOG_WARNING("TopP min (%f) is out of range ([0.0, 1.0f]). Change to 0.5.", topPMin);
topPMin = 0.5f;
}
}
uint32_t const topK = runtimeTopK.at(0);
float const topP = runtimeTopP.at(0);
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopK.size(), batchSize));
cudaAutoCpy(reinterpret_cast<uint32_t*>(mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<uint32_t*>(mSetupWorkspaceDevice), mRuntimeTopKDevice, batchSlots, batchSize, mStream);
}
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
fmtstr("runtime_top_p.size() (%lu) == batchSize (%lu) is not satisfied!", runtimeTopP.size(), batchSize));
cudaAutoCpy(reinterpret_cast<float*>(mSetupWorkspaceDevice), runtimeTopP.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<float*>(mSetupWorkspaceDevice), mRuntimeTopPDevice, batchSlots, batchSize, mStream);
}
auto fillBuffers
= [this, &batchSize, &batchSlots](std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
{
TLLM_CHECK_WITH_INFO(vector.size() == batchSize,
fmtstr("%s.size() (%lu) == batchSize (%lu) is not satisfied!", name.c_str(), vector.size(), batchSize));
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, mStream);
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlots, batchSize, mStream);
};
fillBuffers("top_p_decay", decayVec, reinterpret_cast<float*>(mSetupWorkspaceDevice), mTopPDecayDevice);
fillBuffers("top_p_min", topPMinVec, reinterpret_cast<float*>(mSetupWorkspaceDevice), mTopPMinDevice);
fillBuffers(
"top_p_reset_ids", topPResetIdsVec, reinterpret_cast<int32_t*>(mSetupWorkspaceDevice), mTopPResetIdsDevice);
{
dim3 block(std::min((int) batchSize, 256));
dim3 grid(divUp((int) batchSize, (int) block.x));
setTopPRuntimeArgs<<<grid, block, 0, mStream>>>(batchSize, topK, mRuntimeTopKDevice, runtimeTopKSize, topP,
mRuntimeTopPDevice, runtimeTopPSize, mSkipDecodeDevice, batchSlots, mInitialTopPDevice);
sync_check_cuda_error();
}
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream);
std::vector<float> runtimeTopPs(mMaxBatchSize);
cudaAutoCpy(runtimeTopPs.data(), mRuntimeTopPDevice, mMaxBatchSize, mStream);
{
float maxTopP = 0.f;
for (size_t bi = 0; bi < batchSize; ++bi)
{
int32_t bid = bi;
if (batchSlots)
{
bid = batchSlots[bi];
}
maxTopP = std::max(maxTopP, runtimeTopPs[bid]);
}
mRuntimeMaxTopP = std::max(mRuntimeMaxTopP, maxTopP);
}
if (!mIsDeterministic)
{
int smCnt = mCudaDeviceProp->multiProcessorCount;
mAirTopPBlockNum = calcAirTopPBlockNum<T, int, float>(batchSize, (int) mVocabSizePadded, smCnt);
}
}
template <typename T>
void TopPSamplingLayer<T>::forward(DecodingOutputParams& outputs, ForwardParams& inputs)
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
// Probabilities must be already computed instead of logits
auto probs = inputs.logits.template getPtr<T>();
auto endIds = inputs.end_ids.template getPtr<const int>();
auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<const int>() : nullptr;
auto curandStatesDevice = inputs.curand_states;
auto samplingWorkspaceDevice = inputs.sampling_workspace;
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
if (mIsDeterministic)
{
invokeTopPInitialize(
mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, batchSize, mVocabSizePadded, mStream);
sync_check_cuda_error();
}
FinishedState* finishedInput = (inputs.finished)
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
FinishedState* finishedOutput = (outputs.finished)
? reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
float* cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : nullptr;
float* outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>() : nullptr;
int* sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<int>() : nullptr;
if (mIsDeterministic)
{
invokeBatchTopPSampling<T>(samplingWorkspaceDevice, mSamplingWorkspaceSize, mCubTempStorageSize,
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
outputLogProbs, probs, mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, curandStatesDevice,
batchSize, mMaxBatchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, mRuntimeTopPDevice, mStream,
mSkipDecodeDevice, batchSlots);
sync_check_cuda_error();
invokeComputeToppDecay(mRuntimeTopPDevice, mInitialTopPDevice,
outputs.output_ids_ptr.template getPtr<const int*>(), mTopPDecayDevice, mTopPMinDevice, mTopPResetIdsDevice,
sequenceLength, batchSlots, batchSize, mStream);
sync_check_cuda_error();
}
else
{
invokeBatchAirTopPSampling<T>(samplingWorkspaceDevice, mSamplingWorkspaceSize,
outputs.output_ids_ptr.template getPtr<int*>(), sequenceLength, finishedInput, finishedOutput, cumLogProbs,
outputLogProbs, probs, curandStatesDevice, batchSize, mMaxBatchSize, mVocabSizePadded, endIds,
mRuntimeMaxTopP, mRuntimeTopPDevice, mStream, mAirTopPBlockNum, mSkipDecodeDevice, batchSlots);
sync_check_cuda_error();
}
}
template <typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(std::size_t maxBatchSize, std::size_t vocabSize, std::size_t vocabSizePadded,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop, bool isDeterministic)
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), prop)
, mIsDeterministic(isDeterministic)
{
allocateBuffer(mMaxBatchSize);
}
template <typename T>
TopPSamplingLayer<T>::~TopPSamplingLayer()
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
freeBuffer();
}
template class TopPSamplingLayer<float>;
template class TopPSamplingLayer<half>;
} // namespace layers
} // namespace tensorrt_llm