mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
207 lines
6.2 KiB
Python
207 lines
6.2 KiB
Python
# Copyright 2024 DeepMind Technologies Limited.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Transformer sub-modules.
|
|
"""
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
from flax import linen as nn
|
|
|
|
from . import layers, positional_embeddings
|
|
|
|
K_MASK = -2.3819763e38 # Set to a large negative number.
|
|
LayerCache = dict[str, jax.Array]
|
|
|
|
|
|
def init_layer_cache(cache_size: int, num_heads: int, head_dim: int,
|
|
batch_size: int) -> LayerCache:
|
|
return {
|
|
'v':
|
|
jnp.zeros((batch_size, cache_size, num_heads, head_dim),
|
|
dtype=jnp.float32),
|
|
'k':
|
|
jnp.zeros((batch_size, cache_size, num_heads, head_dim),
|
|
dtype=jnp.float32),
|
|
}
|
|
|
|
|
|
class Embedder(nn.Module):
|
|
"""Embedder module."""
|
|
|
|
vocab_size: int
|
|
embed_dim: int
|
|
|
|
def setup(self):
|
|
self.input_embedding_table = self.param(
|
|
'input_embedding',
|
|
nn.initializers.zeros_init(),
|
|
(self.vocab_size, self.embed_dim),
|
|
)
|
|
|
|
def encode(self, x: jax.Array) -> jax.Array:
|
|
x = self.input_embedding_table[(x, )]
|
|
x *= jnp.sqrt(self.embed_dim).astype(x.dtype)
|
|
return x
|
|
|
|
def decode(self, x: jax.Array) -> jax.Array:
|
|
return jnp.dot(x, self.input_embedding_table.T)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""Attention module."""
|
|
|
|
num_heads: int
|
|
num_kv_heads: int
|
|
features: int
|
|
head_dim: int
|
|
|
|
@property
|
|
def use_qkv_einsum(self):
|
|
return self.num_kv_heads == self.num_heads
|
|
|
|
def setup(self):
|
|
self.attn_vec_einsum = layers.Einsum(shape=(self.num_heads,
|
|
self.head_dim,
|
|
self.features), )
|
|
|
|
if self.use_qkv_einsum:
|
|
self.qkv_einsum = layers.Einsum(shape=(3, self.num_heads,
|
|
self.features,
|
|
self.head_dim), )
|
|
else:
|
|
self.q_einsum = layers.Einsum(shape=(self.num_heads, self.features,
|
|
self.head_dim), )
|
|
self.kv_einsum = layers.Einsum(shape=(2, self.num_kv_heads,
|
|
self.features,
|
|
self.head_dim), )
|
|
|
|
def __call__(
|
|
self,
|
|
x: jax.Array,
|
|
segment_pos: int,
|
|
cache: LayerCache,
|
|
attn_mask: jax.Array,
|
|
time_step: int,
|
|
) -> tuple[LayerCache, jax.Array]:
|
|
|
|
bsz = x.shape[0]
|
|
|
|
if self.use_qkv_einsum:
|
|
query_proj, key_proj, value_proj = self.qkv_einsum(
|
|
'BTD,SNDH->SBTNH', x)
|
|
else:
|
|
query_proj = self.q_einsum('BTD,NDH->BTNH', x)
|
|
key_proj, value_proj = self.kv_einsum('BSD,CKDH->CBSKH', x)
|
|
|
|
query_proj = positional_embeddings.apply_rope(
|
|
query_proj,
|
|
segment_pos,
|
|
head_dim=self.head_dim,
|
|
)
|
|
query_scaled = query_proj * self.head_dim**-0.5
|
|
|
|
key_proj = positional_embeddings.apply_rope(
|
|
key_proj,
|
|
segment_pos,
|
|
head_dim=self.head_dim,
|
|
)
|
|
|
|
# Cache is left aligned.
|
|
cache['v'] = (cache['v'].at[:bsz, [time_step], :, :].set(value_proj)
|
|
) # values
|
|
cache['k'] = (cache['k'].at[:bsz, [time_step], :, :].set(key_proj)
|
|
) # rotated_keys
|
|
|
|
logits = jnp.einsum('BTNH,BSNH->BTNS', query_scaled, cache['k'])
|
|
logits = logits.astype(jnp.float32)
|
|
|
|
padded_logits = jnp.where(
|
|
(jnp.expand_dims(attn_mask, -2) >= K_MASK * 0.5), logits, K_MASK)
|
|
probs = jax.nn.softmax(padded_logits, axis=-1).astype(cache['k'].dtype)
|
|
|
|
encoded = jnp.einsum('BTNS,BSNH->BTNH', probs, cache['v'])
|
|
attn_output = self.attn_vec_einsum('BTNH,NHD->BTD', encoded)
|
|
|
|
return cache, attn_output
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
"""Feed forward module."""
|
|
|
|
features: int
|
|
hidden_dim: int
|
|
|
|
@nn.compact
|
|
def __call__(self, x):
|
|
w_gating = self.param(
|
|
'gating_einsum',
|
|
nn.initializers.zeros_init(),
|
|
((2, self.features, self.hidden_dim)),
|
|
)
|
|
ff_gate = jnp.dot(x, w_gating[0])
|
|
gate_value = nn.gelu(ff_gate)
|
|
|
|
ff1 = jnp.dot(x, w_gating[1])
|
|
activations = gate_value * ff1
|
|
|
|
w_linear = self.param(
|
|
'linear',
|
|
nn.initializers.zeros_init(),
|
|
(self.hidden_dim, self.features),
|
|
)
|
|
outputs = jnp.dot(activations, w_linear)
|
|
|
|
return outputs
|
|
|
|
|
|
class Block(nn.Module):
|
|
"""Transformer block."""
|
|
|
|
num_heads: int
|
|
num_kv_heads: int
|
|
embed_dim: int
|
|
head_dim: int
|
|
hidden_dim: int
|
|
|
|
def setup(self):
|
|
self.pre_attention_norm = layers.RMSNorm()
|
|
self.attn = Attention(
|
|
num_heads=self.num_heads,
|
|
features=self.embed_dim,
|
|
head_dim=self.head_dim,
|
|
num_kv_heads=self.num_kv_heads,
|
|
)
|
|
self.pre_ffw_norm = layers.RMSNorm()
|
|
self.mlp = FeedForward(features=self.embed_dim,
|
|
hidden_dim=self.hidden_dim)
|
|
|
|
def __call__(
|
|
self,
|
|
x: jax.Array,
|
|
segment_pos: int,
|
|
cache: LayerCache,
|
|
attn_mask: jax.Array,
|
|
time_step: int,
|
|
):
|
|
inputs_normalized = self.pre_attention_norm(x)
|
|
cache, attn_output = self.attn(inputs_normalized, segment_pos, cache,
|
|
attn_mask, time_step)
|
|
attn_output += x
|
|
residual = attn_output
|
|
attn_output = self.pre_ffw_norm(attn_output)
|
|
outputs = self.mlp(attn_output)
|
|
outputs = residual + outputs
|
|
return cache, outputs
|