TensorRT-LLMs/examples/gemma/utils/modules.py
Kaiyu Xie eb8f26c7e4
Update TensorRT-LLM (#1122)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-21 21:30:55 +08:00

207 lines
6.2 KiB
Python

# Copyright 2024 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Transformer sub-modules.
"""
import jax
import jax.numpy as jnp
from flax import linen as nn
from . import layers, positional_embeddings
K_MASK = -2.3819763e38 # Set to a large negative number.
LayerCache = dict[str, jax.Array]
def init_layer_cache(cache_size: int, num_heads: int, head_dim: int,
batch_size: int) -> LayerCache:
return {
'v':
jnp.zeros((batch_size, cache_size, num_heads, head_dim),
dtype=jnp.float32),
'k':
jnp.zeros((batch_size, cache_size, num_heads, head_dim),
dtype=jnp.float32),
}
class Embedder(nn.Module):
"""Embedder module."""
vocab_size: int
embed_dim: int
def setup(self):
self.input_embedding_table = self.param(
'input_embedding',
nn.initializers.zeros_init(),
(self.vocab_size, self.embed_dim),
)
def encode(self, x: jax.Array) -> jax.Array:
x = self.input_embedding_table[(x, )]
x *= jnp.sqrt(self.embed_dim).astype(x.dtype)
return x
def decode(self, x: jax.Array) -> jax.Array:
return jnp.dot(x, self.input_embedding_table.T)
class Attention(nn.Module):
"""Attention module."""
num_heads: int
num_kv_heads: int
features: int
head_dim: int
@property
def use_qkv_einsum(self):
return self.num_kv_heads == self.num_heads
def setup(self):
self.attn_vec_einsum = layers.Einsum(shape=(self.num_heads,
self.head_dim,
self.features), )
if self.use_qkv_einsum:
self.qkv_einsum = layers.Einsum(shape=(3, self.num_heads,
self.features,
self.head_dim), )
else:
self.q_einsum = layers.Einsum(shape=(self.num_heads, self.features,
self.head_dim), )
self.kv_einsum = layers.Einsum(shape=(2, self.num_kv_heads,
self.features,
self.head_dim), )
def __call__(
self,
x: jax.Array,
segment_pos: int,
cache: LayerCache,
attn_mask: jax.Array,
time_step: int,
) -> tuple[LayerCache, jax.Array]:
bsz = x.shape[0]
if self.use_qkv_einsum:
query_proj, key_proj, value_proj = self.qkv_einsum(
'BTD,SNDH->SBTNH', x)
else:
query_proj = self.q_einsum('BTD,NDH->BTNH', x)
key_proj, value_proj = self.kv_einsum('BSD,CKDH->CBSKH', x)
query_proj = positional_embeddings.apply_rope(
query_proj,
segment_pos,
head_dim=self.head_dim,
)
query_scaled = query_proj * self.head_dim**-0.5
key_proj = positional_embeddings.apply_rope(
key_proj,
segment_pos,
head_dim=self.head_dim,
)
# Cache is left aligned.
cache['v'] = (cache['v'].at[:bsz, [time_step], :, :].set(value_proj)
) # values
cache['k'] = (cache['k'].at[:bsz, [time_step], :, :].set(key_proj)
) # rotated_keys
logits = jnp.einsum('BTNH,BSNH->BTNS', query_scaled, cache['k'])
logits = logits.astype(jnp.float32)
padded_logits = jnp.where(
(jnp.expand_dims(attn_mask, -2) >= K_MASK * 0.5), logits, K_MASK)
probs = jax.nn.softmax(padded_logits, axis=-1).astype(cache['k'].dtype)
encoded = jnp.einsum('BTNS,BSNH->BTNH', probs, cache['v'])
attn_output = self.attn_vec_einsum('BTNH,NHD->BTD', encoded)
return cache, attn_output
class FeedForward(nn.Module):
"""Feed forward module."""
features: int
hidden_dim: int
@nn.compact
def __call__(self, x):
w_gating = self.param(
'gating_einsum',
nn.initializers.zeros_init(),
((2, self.features, self.hidden_dim)),
)
ff_gate = jnp.dot(x, w_gating[0])
gate_value = nn.gelu(ff_gate)
ff1 = jnp.dot(x, w_gating[1])
activations = gate_value * ff1
w_linear = self.param(
'linear',
nn.initializers.zeros_init(),
(self.hidden_dim, self.features),
)
outputs = jnp.dot(activations, w_linear)
return outputs
class Block(nn.Module):
"""Transformer block."""
num_heads: int
num_kv_heads: int
embed_dim: int
head_dim: int
hidden_dim: int
def setup(self):
self.pre_attention_norm = layers.RMSNorm()
self.attn = Attention(
num_heads=self.num_heads,
features=self.embed_dim,
head_dim=self.head_dim,
num_kv_heads=self.num_kv_heads,
)
self.pre_ffw_norm = layers.RMSNorm()
self.mlp = FeedForward(features=self.embed_dim,
hidden_dim=self.hidden_dim)
def __call__(
self,
x: jax.Array,
segment_pos: int,
cache: LayerCache,
attn_mask: jax.Array,
time_step: int,
):
inputs_normalized = self.pre_attention_norm(x)
cache, attn_output = self.attn(inputs_normalized, segment_pos, cache,
attn_mask, time_step)
attn_output += x
residual = attn_output
attn_output = self.pre_ffw_norm(attn_output)
outputs = self.mlp(attn_output)
outputs = residual + outputs
return cache, outputs