TensorRT-LLMs/examples/llama/convert_checkpoint.py
Kaiyu Xie eb8f26c7e4
Update TensorRT-LLM (#1122)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-21 21:30:55 +08:00

1510 lines
62 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import copy
import functools
import json
import os
import time
import traceback
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import numpy as np
import safetensors
import torch
import torch.nn as nn
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from transformers.pytorch_utils import Conv1D
import tensorrt_llm
from tensorrt_llm._utils import pad_vocab_size
from tensorrt_llm.layers import MoeConfig
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.llama.weight import (load_from_gptq_llama,
load_from_hf_checkpoint,
load_from_meta_llama)
from tensorrt_llm.models.modeling_utils import PretrainedConfig
from tensorrt_llm.runtime.lora_manager import LoraConfig
try:
from transformers import LlavaConfig, LlavaForConditionalGeneration
except ImportError:
pass
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--meta_ckpt_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--inter_size', type=int, default=11008)
parser.add_argument('--rms_norm_eps', type=float, default=1e-06)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--disable_weight_only_quant_plugin',
default=False,
action="store_true",
help=
'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_gptq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
'--per_channel',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--ammo_quant_ckpt_path',
type=str,
default=None,
help='Path of a quantized model checkpoint in .npz format')
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for Attention QKV/Dense and MLP.')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help='By default, we use dtype for KV cache. fp8_kv_cache chooses int8 '
'quantization for KV')
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--rotary_base', type=float, default=10000.0)
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
parser.add_argument('--group_size',
type=int,
default=128,
help='Group size used in GPTQ/AWQ quantization.')
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16"])
parser.add_argument("--dataset-cache-dir",
type=str,
default=None,
help="cache dir to load the hugging face dataset")
parser.add_argument("--load-model-on-cpu", action="store_true")
parser.add_argument("--convert-model-on-cpu", action="store_true")
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument('--use_prompt_tuning',
action="store_true",
default=False)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument(
'--moe_num_experts',
default=0,
type=int,
help='Specify the number of experts to use for MOE layers')
parser.add_argument(
'--moe_top_k',
default=0,
type=int,
help=
'Specify the top_k value to use for MOE layers. Default to 1 if --moe_num_experts is set'
)
parser.add_argument(
'--moe_tp_mode',
default=MoeConfig.ParallelismMode.TENSOR_PARALLEL,
type=int,
help=
'Controls how to distribute experts in TP. Check layers/moe.py for accepted values',
)
parser.add_argument(
'--moe_renorm_mode',
default=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
type=int,
help=
'Controls renormalization after gate logits. Check layers/moe.py for accepted values',
)
parser.add_argument('--enable_pos_shift',
default=False,
action='store_true',
help='Enable position shift for streamingllm method')
parser.add_argument(
'--dense_context_fmha',
default=False,
action='store_true',
help=
'Enable dense fmha in context phase, otherwise sliding window attention.'
'If dense_context_fmha=False, the sliding window size is the max attention window size.'
)
parser.add_argument('--hf_lora_dir', type=str, default=None)
parser.add_argument(
'--lora_target_modules',
nargs='+',
default=None,
choices=[
"attn_qkv",
"attn_q",
"attn_k",
"attn_v",
"attn_dense",
"mlp_h_to_4h",
"mlp_gate",
"mlp_4h_to_h",
],
help=
"Add lora in which modules. Only be activated when use_lora_plugin is enabled."
)
parser.add_argument(
'--max_lora_rank',
type=int,
default=64,
help='maximum lora rank for different lora modules. '
'It is used to compute the workspace size of lora plugin.')
args = parser.parse_args()
return args
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
"""
weights = weights.detach().cpu().numpy()
# compute weight scaling factors for fp->int8 and int8->fp
if is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0].cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
-1).cpu().numpy()
elif is_qkv and multi_query_mode:
hidden_dim = weights.shape[0]
local_dim = act_range["w"].shape[0]
kv_dim = (local_dim - hidden_dim) // 2
scale_w_q = act_range["w"][0:hidden_dim]
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
scale_w_v = act_range["w"][-kv_dim:]
scale_w_qkv_t = torch.concat([
scale_w_q.max(dim=0, keepdim=True)[0],
scale_w_k.max(dim=0, keepdim=True)[0],
scale_w_v.max(dim=0, keepdim=True)[0]
])
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
else:
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
scale_w_orig_quant_c = scale_w_orig_quant_c.astype(np.float32)
scale_w_orig_quant_t = scale_w_orig_quant_t.astype(np.float32)
# compute the rest of needed scaling factors
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv and not multi_query_mode:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
if is_qkv and multi_query_mode:
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
scale_w_q.shape)
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
scale_w_k.shape)
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
scale_w_v.shape)
scale_y_accum_quant_t = np.concatenate(
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
scale_w_quant_orig_t = np.concatenate([
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
])
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
if is_qkv and multi_query_mode:
weight_int8 = to_i8(weights / scale_w_quant_orig_t)
else:
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
return {
"weight.int8": weight_int8,
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
@torch.no_grad()
def apply_smoothing(scales,
gemm_weights,
layernorm_weights=None,
layernorm_bias=None,
dtype=torch.float32,
layernorm_1p=False):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
if layernorm_weights is not None:
assert layernorm_weights.numel() == scales.numel()
layernorm_weights.div_(scales).to(dtype)
if layernorm_bias is not None:
assert layernorm_bias.numel() == scales.numel()
layernorm_bias.div_(scales).to(dtype)
if layernorm_1p:
layernorm_weights += (1 / scales) - 1
for gemm in gemm_weights:
gemm.mul_(scales.view(1, -1)).to(dtype)
@torch.no_grad()
def smooth_gemm(gemm_weights,
act_scales,
layernorm_weights=None,
layernorm_bias=None,
alpha=0.5,
weight_scales=None):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
orig_dtype)
return scales
@torch.no_grad()
def smooth_gemm_fc1_gate(fc1_weights,
gate_weights,
act_scales,
layernorm_weights=None,
layernorm_bias=None,
alpha=0.5,
weight_scales=None):
gemm_weights = []
if not isinstance(fc1_weights, list):
fc1_weights = [fc1_weights]
if not isinstance(gate_weights, list):
gate_weights = [gate_weights]
for i in range(len(fc1_weights)):
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
gemm_weights.append(gemm_weight)
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
layernorm_bias, orig_dtype)
return scales
@torch.no_grad()
def smooth_llama_model(model, scales, alpha, llama_qkv_para, llama_smoother):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, LlamaDecoderLayer):
continue
# qkv_proj
layer_name_q = name + ".self_attn.q_proj"
layer_name_k = name + ".self_attn.k_proj"
layer_name_v = name + ".self_attn.v_proj"
layer_name_qkv = name + ".self_attn.qkv_proj"
weight = torch.cat([
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
module.self_attn.v_proj.weight
],
dim=0)
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
module.input_layernorm.weight, None, alpha)
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
scales[layer_name_qkv]["y"] = torch.cat([
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
scales[layer_name_v]["y"]
],
dim=0)
# see transpose_weights function
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
# =================================================================
layer_name = name + ".self_attn.o_proj"
smoother = smooth_gemm(module.self_attn.o_proj.weight,
scales[layer_name]["x"], None, None, alpha)
llama_smoother[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
fc1_layer_name = name + ".mlp.gate_proj"
gate_layer_name = name + ".mlp.up_proj"
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
module.mlp.up_proj.weight,
scales[fc1_layer_name]["x"],
module.post_attention_layernorm.weight,
None, alpha)
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
dim=1)[0]
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
layer_name = name + ".mlp.down_proj"
smoother = smooth_gemm(module.mlp.down_proj.weight,
scales[layer_name]["x"], None, None, alpha)
llama_smoother[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
dim=1)[0]
@torch.no_grad()
def capture_activation_range(model,
tokenizer,
dataset,
num_samples=512,
seq_len=512):
model.eval()
device = next(model.parameters()).device
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
tokenizer.pad_token = tokenizer.eos_token
def stat_tensor(name, tensor, act_scales, key):
hidden_dim = tensor.shape[-1]
tensor = tensor.view(-1, hidden_dim).abs().detach()
comming_max = torch.max(tensor, dim=0)[0].float()
if act_scales[name][key] is None:
act_scales[name][key] = comming_max
else:
act_scales[name][key] = torch.max(act_scales[name][key],
comming_max)
def stat_input_hook(m, x, y, name):
if isinstance(x, tuple):
x = x[0]
stat_tensor(name, x, act_scales, "x")
stat_tensor(name, y, act_scales, "y")
if act_scales[name]["w"] is None:
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
None).max(dim=1)[0]
hooks = []
for name, m in model.named_modules():
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
hooks.append(
m.register_forward_hook(
functools.partial(stat_input_hook, name=name)))
for i in tqdm(range(num_samples), desc="calibrating model"):
datapoint = dataset['train'][i:i + 1]
line = copy.copy(datapoint['article'])
line[0] = line[0] + ' TL;DR: '
line[0] = line[0].strip()
line[0] = line[0].replace(" n't", "n't")
input_ids = tokenizer(line,
return_tensors="pt",
max_length=seq_len,
padding=True,
truncation=True).input_ids.to(device)
model(input_ids)
for h in hooks:
h.remove()
return act_scales
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return torch.chunk(v, tp_size)[idx].contiguous()
else:
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV matrix according to tensor parallelism
"""
v = v.reshape(3, n_hidden, n_hidden)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
return split_v.contiguous()
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV bias according to tensor parallelism
"""
v = v.reshape(3, n_hidden)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
return split_v.contiguous()
def split_matrix_tp(v, tensor_parallel, rank, dim):
return split(v, tensor_parallel, rank, dim=dim)
def get_weight(config, prefix, dtype):
if config[prefix + '.weight'].dtype != dtype:
config[prefix + '.weight'].data = config[prefix + '.weight'].to(dtype)
return config[prefix + '.weight']
def get_bias(config, prefix, dtype):
if config[prefix + '.bias'].dtype != dtype:
config[prefix + '.bias'].data = config[prefix + '.bias'].to(dtype)
return config[prefix + '.bias']
def get_weight_and_bias(config, prefix, dtype):
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
def get_tllm_linear_weight(weight,
prefix,
bias=None,
use_weight_only=False,
plugin_weight_only_quant_type=torch.int8,
dtype='float32',
use_gemm_woq_plugin=True,
postfix='weight'):
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v.cpu(), plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
results[prefix + postfix] = v.to(dtype)
else:
results[prefix + postfix] = processed_torch_weights
results[prefix + 'per_channel_scale'] = torch_weight_scales
else:
results[prefix + postfix] = weight.contiguous()
if bias is not None:
results[prefix + 'bias'] = bias
return results
def dup_kv_weight(v, num_head, tp_size):
assert tp_size % num_head == 0
reps = tp_size // num_head
head_size = v.shape[0] // num_head
v = v.reshape(num_head, head_size,
-1)[:, None, :, :].expand(num_head, reps, head_size,
v.shape[1])
return v.reshape(num_head * reps * head_size, -1).clone().detach()
def get_tllm_linear_sq_weight(vals,
prefix,
shape,
tensor_parallel,
is_qkv=False,
per_token=False,
per_channel=False,
last_prefix=None,
bias=None,
smoother_value=None,
smoother_shape=None,
rank=0,
cat_dim=0,
multi_query_mode=False):
results = {}
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
q_split = np.split(q, tp_size, axis=-1)
k_split = np.split(k, tp_size, axis=-1)
v_split = np.split(v, tp_size, axis=-1)
return [
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
for ii in range(tp_size)
][cur_rank]
col_shape = shape if (is_qkv or per_channel) else [1, 1]
if per_token:
original_weights = vals["weight.int8.col"]
local_dim = original_weights.shape[0]
head_size = (original_weights.shape[1] - local_dim) // 2
if multi_query_mode:
cur_weights = multi_query_split(original_weights, local_dim,
head_size, tensor_parallel, rank)
else:
cur_weights = np.split(original_weights,
tensor_parallel,
axis=cat_dim)[rank]
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if smoother_value is None:
results[last_prefix] = torch.from_numpy(
np.array([1.0], dtype=np.float32))
if smoother_value is None:
if multi_query_mode:
cur_per_channel_value = multi_query_split(
vals["scale_w_quant_orig.col"], local_dim, head_size,
tensor_parallel, rank)
else:
cur_per_channel_value = np.split(vals["scale_w_quant_orig.col"],
tensor_parallel,
axis=cat_dim)[rank]
else:
cur_per_channel_value = vals["scale_w_quant_orig.col"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array(cur_per_channel_value,
dtype=np.float32).reshape(col_shape)).contiguous()
else:
original_weights = np.array(vals["weight.int8"])
cur_weights = np.split(original_weights, tensor_parallel,
axis=cat_dim)[rank]
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
# 'weight'] = torch.from_numpy(cur_weights).t().contiguous()
cur_per_channel_value = vals["scale_y_accum_quant"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array([cur_per_channel_value],
dtype=np.float32).reshape(col_shape)).contiguous()
results[last_prefix] = torch.from_numpy(
np.array([vals['scale_x_orig_quant']],
dtype=np.float32)).contiguous()
results[prefix + 'act_scale'] = torch.from_numpy(
np.array([[vals["scale_y_quant_orig"]]],
dtype=np.float32)).contiguous()
if smoother_value is not None:
cur_smoother_value = np.split(smoother_value,
tensor_parallel,
axis=cat_dim)[rank]
results[prefix + 'smoother'] = cur_smoother_value.reshape(
smoother_shape).contiguous().to(torch.float32)
if bias is not None:
results[prefix + 'bias'] = bias
return results
def convert_hf_llama(hf_model,
mapping,
vocab_size=32000,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0,
use_weight_only=False,
share_embedding_table=False,
use_gemm_woq_plugin=False,
plugin_weight_only_quant_type=torch.int8,
use_smooth_quant=False,
per_channel=False,
per_token=False,
int8_kv_cache=False,
act_range=[],
qkv_para=[],
smoother=[],
moe_config=None,
lora_config=None):
weights = {}
tik = time.time()
tensor_parallel = mapping.tp_size
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, dtype)
num_attention_heads = hf_model.config.num_attention_heads
hidden_size = hf_model.config.hidden_size
intermediate_size = hf_model.config.intermediate_size
num_key_value_heads = hf_model.config.num_key_value_heads
mha_mode = (num_key_value_heads == num_attention_heads)
layers_range = mapping.pp_layers(hf_model.config.num_hidden_layers)
if moe_config and moe_config.has_moe():
rank_experts = list(range(moe_config.num_experts))
if moe_config.tp_mode == moe_config.ParallelismMode.EXPERT_PARALLEL:
rank_experts = mapping.ep_experts(moe_config.num_experts)
for l in layers_range:
for suffix in ["w1", "w2", "w3"]:
model_params[f'model.layers.{l}.block_sparse_moe.experts.{suffix}.weight'] = \
torch.stack(list(model_params[f'model.layers.{l}.block_sparse_moe.experts.{expert}.{suffix}.weight']
for expert in rank_experts))
w3 = model_params[
f'model.layers.{l}.block_sparse_moe.experts.w3.weight']
w2 = model_params[
f'model.layers.{l}.block_sparse_moe.experts.w2.weight']
w1 = model_params[
f'model.layers.{l}.block_sparse_moe.experts.w1.weight']
if moe_config.tp_mode == moe_config.ParallelismMode.TENSOR_PARALLEL:
w3 = split(w3, mapping.tp_size, mapping.tp_rank, dim=1)
w2 = split(w2, mapping.tp_size, mapping.tp_rank, dim=2)
w1 = split(w1, mapping.tp_size, mapping.tp_rank, dim=1)
# concat w3 and w1 for gated expert
model_params[f'model.layers.{l}.block_sparse_moe.experts.w3w1.weight'] = \
torch.concat([w3, w1], dim=-2)
model_params[
f'model.layers.{l}.block_sparse_moe.experts.w2.weight'] = w2
for l in layers_range:
prefix = f'model.layers.{l}.'
tllm_prex = f'transformer.layers.{l - layers_range[0]}.'
q_weight = get_weight(model_params, prefix + 'self_attn.q_proj', dtype)
k_weight = get_weight(model_params, prefix + 'self_attn.k_proj', dtype)
v_weight = get_weight(model_params, prefix + 'self_attn.v_proj', dtype)
if not mha_mode:
head_size = hidden_size // num_attention_heads
if num_key_value_heads < tensor_parallel:
# duplicate the KV heads up to tensor_parallel
k_weight = dup_kv_weight(k_weight, num_key_value_heads,
tensor_parallel)
v_weight = dup_kv_weight(v_weight, num_key_value_heads,
tensor_parallel)
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
wq = split(q_weight, mapping.tp_size, mapping.tp_rank)
wk = split(k_weight, mapping.tp_size, mapping.tp_rank)
wv = split(v_weight, mapping.tp_size, mapping.tp_rank)
split_v = torch.concat((wq, wk, wv))
else:
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
tensor_parallel, mapping.tp_rank)
if use_smooth_quant:
qkv_weight = qkv_para[prefix + 'self_attn.qkv_proj']
if not mha_mode:
hidden_size = qkv_weight.shape[0]
local_dim = hidden_size
head_size = (qkv_weight.shape[-1] - local_dim) // 2
qkv_weight = qkv_weight.reshape(hidden_size,
local_dim + 2 * head_size)
else:
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
int8_weights = generate_int8(qkv_weight,
act_range.get(prefix +
'self_attn.qkv_proj'),
is_qkv=True,
multi_query_mode=bool(not mha_mode))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'attention.qkv.', [
1, 3 * hidden_size // tensor_parallel
if mha_mode else hidden_size // tensor_parallel +
(hidden_size // num_key_value_heads) //
tensor_parallel * 2
],
tensor_parallel,
is_qkv=True,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'input_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
rank=mapping.tp_rank,
cat_dim=-1,
multi_query_mode=bool(not mha_mode)))
else:
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.',
None, use_weight_only,
plugin_weight_only_quant_type, dtype,
use_gemm_woq_plugin))
if int8_kv_cache:
qkv_y = torch.cat([
act_range.get(prefix + 'self_attn.q_proj')["y"],
act_range.get(prefix + 'self_attn.k_proj')["y"],
act_range.get(prefix + 'self_attn.v_proj')["y"]
],
dim=0)
int8_kv_scales = qkv_y.max() / 127.
kv_cache_weights = {}
kv_cache_weights[
tllm_prex +
'attention.kv_cache_scaling_factor'] = int8_kv_scales.reshape(
[1])
weights.update(kv_cache_weights)
attn_dense_weight = get_weight(model_params,
prefix + 'self_attn.o_proj', dtype)
split_v = split_matrix_tp(attn_dense_weight,
tensor_parallel,
mapping.tp_rank,
dim=1)
if use_smooth_quant:
attn_dense_weight = attn_dense_weight.t()
int8_weights = generate_int8(
attn_dense_weight, act_range.get(prefix + 'self_attn.o_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'attention.dense.', [1, hidden_size],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex +
'attention.quantization_scaling_factor',
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
smoother_shape=[1, hidden_size // tensor_parallel],
rank=mapping.tp_rank,
cat_dim=0))
else:
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
None, use_weight_only,
plugin_weight_only_quant_type, dtype,
use_gemm_woq_plugin))
if moe_config and moe_config.has_moe():
## block_sparse_moe.experts.w2.weight
moe_experts_w2_weights = get_weight(
model_params, prefix + 'block_sparse_moe.experts.w2', dtype)
weights.update(
get_tllm_linear_weight(moe_experts_w2_weights,
tllm_prex + 'mlp.experts_weight_2',
None,
use_weight_only,
plugin_weight_only_quant_type,
dtype,
use_gemm_woq_plugin,
postfix=''))
##block_sparse_moe.experts.w3w1.weight
moe_experts_w3w1_weights = get_weight(
model_params, prefix + 'block_sparse_moe.experts.w3w1', dtype)
weights.update(
get_tllm_linear_weight(moe_experts_w3w1_weights,
tllm_prex + 'mlp.experts_weight_1',
None,
use_weight_only,
plugin_weight_only_quant_type,
dtype,
use_gemm_woq_plugin,
postfix=''))
moe_experts_gate_weights = get_weight(
model_params, prefix + 'block_sparse_moe.gate', dtype)
v = split(moe_experts_gate_weights,
mapping.tp_size,
mapping.tp_rank,
dim=-1)
weights.update(
get_tllm_linear_weight(v.to(torch.float32),
tllm_prex + 'mlp.router.', None,
use_weight_only,
plugin_weight_only_quant_type, dtype,
use_gemm_woq_plugin))
else:
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.up_proj',
dtype)
split_v = split_matrix_tp(mlp_gate_weight,
tensor_parallel,
mapping.tp_rank,
dim=0)
if use_smooth_quant:
mlp_gate_weight = mlp_gate_weight.t()
int8_weights = generate_int8(
mlp_gate_weight, act_range.get(prefix + 'mlp.up_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.gate.',
[1, intermediate_size // tensor_parallel],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
rank=mapping.tp_rank,
cat_dim=-1))
else:
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.gate.',
None, use_weight_only,
plugin_weight_only_quant_type, dtype,
use_gemm_woq_plugin))
mlp_fc_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
dtype)
split_v = split_matrix_tp(mlp_fc_weight,
tensor_parallel,
mapping.tp_rank,
dim=0)
if use_smooth_quant:
mlp_fc_weight = mlp_fc_weight.t() #verified
int8_weights = generate_int8(
mlp_fc_weight, act_range.get(prefix + 'mlp.gate_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.fc.',
[1, intermediate_size // tensor_parallel],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
rank=mapping.tp_rank,
cat_dim=-1))
else:
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', None,
use_weight_only,
plugin_weight_only_quant_type, dtype,
use_gemm_woq_plugin))
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
dtype)
split_v = split_matrix_tp(mlp_proj_weight,
tensor_parallel,
mapping.tp_rank,
dim=1)
if use_smooth_quant:
mlp_proj_weight = mlp_proj_weight.t()
int8_weights = generate_int8(
mlp_proj_weight, act_range.get(prefix + 'mlp.down_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.proj.', [1, hidden_size],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex +
'mlp.quantization_scaling_factor',
smoother_value=smoother[prefix + 'mlp.down_proj'],
smoother_shape=[
1, intermediate_size // tensor_parallel
],
rank=mapping.tp_rank,
cat_dim=0))
else:
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
None, use_weight_only,
plugin_weight_only_quant_type, dtype,
use_gemm_woq_plugin))
# Layer norms do not use tensor parallelism
input_ln_weight = get_weight(model_params, prefix + 'input_layernorm',
dtype)
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
post_ln_weight = get_weight(model_params,
prefix + 'post_attention_layernorm', dtype)
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
v = get_weight(model_params, 'model.embed_tokens', dtype)
if lora_config.is_valid and lora_config.embedding_weight is not None:
v = lora_config.embedding_weight
if hf_model.config.tie_word_embeddings:
# lm_head.weight has the same weights as embedding
if mapping.is_last_pp_rank():
if vocab_size % mapping.tp_size != 0:
# padding
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
pad_width = vocab_size_padded - vocab_size
v = torch.from_numpy(
np.pad(v.detach().cpu().numpy(), ((0, pad_width), (0, 0)),
'constant',
constant_values=0))
weights['lm_head.weight'] = split(v, mapping.tp_size,
mapping.tp_rank)
if use_parallel_embedding:
v = split_matrix_tp(v,
mapping.tp_size,
mapping.tp_rank,
dim=sharding_dim)
if mapping.is_first_pp_rank():
weights['transformer.vocab_embedding.weight'] = v
# if not use_parallel_embedding:
# weights['transformer.vocab_embedding.weight'] = embed_w
# else:
# assert hf_model.config.vocab_size % tensor_parallel == 0
# weights['transformer.vocab_embedding.weight'] = split_matrix_tp(
# embed_w, tensor_parallel, rank
lm_head_weights = get_weight(model_params, 'lm_head', dtype)
if mapping.is_last_pp_rank():
if lora_config.is_valid and lora_config.lm_head_weight is not None:
lm_head_weights = lora_config.lm_head_weight
if vocab_size % mapping.tp_size != 0:
# padding
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
pad_width = vocab_size_padded - vocab_size
lm_head_weights = torch.from_numpy(
np.pad(lm_head_weights.detach().cpu().numpy(),
((0, pad_width), (0, 0)),
'constant',
constant_values=0))
weights['lm_head.weight'] = split_matrix_tp(lm_head_weights,
tensor_parallel,
mapping.tp_rank,
dim=0)
ln_f_w = get_weight(model_params, 'model.norm', dtype)
weights['transformer.ln_f.weight'] = ln_f_w
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
def main():
# TODO(qijun): Currently, the convert script depends on a torch op:
# torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix,
# which is included in tensorrt_llm Python package. Otherwise, the convert
# script does not need to import tensorrt_llm. Will remove it after reimplementing
# the op with PyTorch.
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
hf_config = None
if args.model_dir is not None:
hf_config = AutoConfig.from_pretrained(args.model_dir,
trust_remote_code=True)
if hf_config.model_type == "llava":
# LLaVA = Vision model + Llama LLM
# We load a llava config and use its' text config as llama config
hf_config = LlavaConfig.from_pretrained(args.model_dir).text_config
hf_config.model_type = "llava" # Replace llama with llava
args.model_type = hf_config.model_type
args.n_head = hf_config.num_attention_heads
args.inter_size = hf_config.intermediate_size
args.n_layer = hf_config.num_hidden_layers
args.n_embd = hf_config.hidden_size
args.n_kv_head = hf_config.num_key_value_heads
args.rms_norm_eps = hf_config.rms_norm_eps
args.vocab_size = hf_config.vocab_size
args.n_positions = hf_config.max_position_embeddings
if hf_config.model_type == "mixtral":
# HF LLaMA-type models are implicitly using gated activation.
# With our MoE implementation, we must make it explicit
args.hidden_act = "swiglu"
args.moe_num_experts = getattr(hf_config, "num_local_experts",
args.moe_num_experts)
args.moe_top_k = getattr(hf_config, "num_experts_per_tok",
args.moe_top_k)
args.rotary_base = getattr(hf_config, "rope_theta",
args.rotary_base)
elif args.meta_ckpt_dir is not None:
with open(Path(args.meta_ckpt_dir, "params.json")) as fp:
meta_config: dict = json.load(fp)
args.n_embd = meta_config["dim"]
args.n_head = meta_config["n_heads"]
args.n_layer = meta_config["n_layers"]
args.n_kv_head = meta_config.get("n_kv_heads", args.n_head)
if "hidden_dim" in meta_config:
args.inter_size = meta_config["hidden_dim"]
else:
args.multiple_of = meta_config.get("multiple_of", 1)
n_embd = int(4 * args.n_embd * 2 / 3)
args.ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
args.inter_size = args.multiple_of * (
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1)
// args.multiple_of)
args.rms_norm_eps = meta_config["norm_eps"]
args.moe_num_experts = meta_config.get("moe", {}).get("num_experts", 0)
args.moe_top_k = meta_config.get("moe", {}).get("num_experts_per_tok",
0)
else:
args.n_kv_head = args.n_kv_head or args.n_head
if args.moe_num_experts and args.moe_top_k == 0:
args.moe_top_k = 1
args.moe_config = MoeConfig(args.moe_num_experts, args.moe_top_k,
args.moe_tp_mode,
args.moe_renorm_mode).validate()
if args.rotary_scaling is not None:
# assert args.use_gpt_attention_plugin, "RoPE scaling is only supported through GPT attention plugin."
rotary_scaling = {
"type": args.rotary_scaling[0],
"factor": float(args.rotary_scaling[1])
}
assert rotary_scaling["type"] in ["linear", "dynamic"]
assert rotary_scaling["factor"] > 1.0
args.rotary_scaling = rotary_scaling
hf_modules_to_trtllm_modules = {
"q_proj": "attn_q",
"k_proj": "attn_k",
"v_proj": "attn_v",
"o_proj": "attn_dense",
"gate_proj": "mlp_h_to_4h",
"down_proj": "mlp_4h_to_h",
"up_proj": "mlp_gate"
} # lora modules on llama
trtllm_modules_to_hf_modules = {
"attn_q": "q_proj",
"attn_k": "k_proj",
"attn_v": "v_proj",
"attn_dense": "o_proj",
"mlp_h_to_4h": "gate_proj",
"mlp_4h_to_h": "down_proj",
"mlp_gate": "up_proj",
}
lora_config = LoraConfig.from_hf(args.hf_lora_dir,
hf_modules_to_trtllm_modules,
trtllm_modules_to_hf_modules)
if lora_config.is_valid and lora_config.vocab_size != 0:
if args.lora_target_modules is None:
args.lora_target_modules = lora_config.lora_target_modules
# the lora checkpoint might finetune the embedding
if lora_config.vocab_size != 0:
args.vocab_size = lora_config.vocab_size
args.lora_config = lora_config
config = {
'architecture': hf_config.architectures[0]
if hf_config is not None else "LlamaForCausalLM",
'dtype': args.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': args.n_layer,
'num_attention_heads': args.n_head,
'hidden_size': args.n_embd,
'intermediate_size': args.inter_size,
'num_key_value_heads': args.n_kv_head,
'vocab_size': args.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': args.n_positions,
'hidden_act': args.hidden_act,
'rotary_base': args.rotary_base,
'rotary_scaling': args.rotary_scaling,
'norm_epsilon': args.rms_norm_eps,
'quantization': {
'quant_algo': None,
'kv_cache_quant_algo': None,
"sq_use_plugin": False,
},
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'share_embedding_table': args.use_embedding_sharing,
'use_prompt_tuning': args.use_prompt_tuning,
'moe_num_experts': args.moe_num_experts,
'moe_top_k': args.moe_top_k,
'moe_tp_mode': args.moe_tp_mode,
'moe_normalization_mode': args.moe_renorm_mode,
'enable_pos_shift': args.enable_pos_shift,
'dense_context_fmha': args.dense_context_fmha,
'max_lora_rank': args.max_lora_rank,
'lora_target_modules': args.lora_target_modules,
'hf_modules_to_trtllm_modules':
args.lora_config.hf_modules_to_trtllm_modules,
'trtllm_modules_to_hf_modules':
args.lora_config.trtllm_modules_to_hf_modules,
'disable_weight_only_quant_plugin':
args.disable_weight_only_quant_plugin
}
if args.use_weight_only:
if args.weight_only_precision == 'int8':
config['quantization']['quant_algo'] = 'W8A16'
elif args.weight_only_precision == 'int4':
config['quantization']['quant_algo'] = 'W4A16'
elif args.smoothquant:
config['quantization']['sq_use_plugin'] = True
if args.per_channel:
if args.per_token:
config['quantization'][
'quant_algo'] = 'W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN'
else:
config['quantization'][
'quant_algo'] = 'W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN'
else:
if args.per_token:
config['quantization'][
'quant_algo'] = 'W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN'
else:
config['quantization'][
'quant_algo'] = 'W8A8_SQ_PER_TENSOR_PLUGIN'
if args.int8_kv_cache:
config['quantization']['kv_cache_quant_algo'] = 'INT8'
if args.weight_only_precision == 'int4_gptq':
config['quantization'].update({
"group_size": args.group_size,
"has_zero_point": True,
"pre_quant_scale": False,
'quant_algo': 'W4A16_GPTQ'
})
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
if args.model_dir is None and args.meta_ckpt_dir is None:
return
if args.weight_only_precision == 'int8':
plugin_weight_only_quant_type = torch.int8
elif args.weight_only_precision == 'int4':
plugin_weight_only_quant_type = torch.quint4x2
act_range = {}
llama_qkv_para = {}
# smoother for inputs of self_attn.o_proj and mlp.down_proj
llama_smoother = {}
model = None
if args.model_dir is not None:
if args.model_type == "llava":
hf_llava = LlavaForConditionalGeneration.from_pretrained(
args.model_dir, torch_dtype="auto")
model = hf_llava.language_model
else:
model = AutoModelForCausalLM.from_pretrained(
args.model_dir,
device_map='auto',
torch_dtype='auto' if not args.smoothquant else torch.float16,
trust_remote_code=True,
)
if args.smoothquant is not None or args.int8_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
if args.load_model_on_cpu:
logger.warning(
"Note that running capture_activation_range on cpu would be very small."
)
dataset = load_dataset("ccdv/cnn_dailymail",
'3.0.0',
cache_dir=args.dataset_cache_dir)
act_range = capture_activation_range(
model,
AutoTokenizer.from_pretrained(args.model_dir,
trust_remote_code=True,
use_fast=False,
padding_side='left'), dataset)
if args.smoothquant is not None:
smooth_llama_model(model, act_range, args.smoothquant,
llama_qkv_para, llama_smoother)
convert_args = {
'hf_model': model,
'act_range': act_range,
'llama_qkv_para': llama_qkv_para,
'llama_smoother': llama_smoother,
}
def covert_and_save(rank, convert_args):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
if args.use_weight_only and args.weight_only_precision == 'int4_gptq':
weights = load_from_gptq_llama(args.ammo_quant_ckpt_path,
args.n_layer,
args.vocab_size,
mapping,
dtype=args.dtype)
elif args.meta_ckpt_dir is not None:
weights = load_from_meta_llama(
args.meta_ckpt_dir, mapping,
PretrainedConfig.from_dict(copy.deepcopy(config)))
else:
if args.load_by_shard:
weights = load_from_hf_checkpoint(
args.model_dir, mapping,
PretrainedConfig.from_dict(copy.deepcopy(config)),
args.lora_config)
else:
weights = convert_hf_llama(
convert_args['hf_model'],
mapping,
vocab_size=args.vocab_size,
dtype=args.dtype,
use_weight_only=args.use_weight_only,
use_gemm_woq_plugin=not args.
disable_weight_only_quant_plugin,
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=args.use_embedding_sharing,
use_smooth_quant=args.smoothquant,
per_channel=args.per_channel,
per_token=args.per_token,
int8_kv_cache=args.int8_kv_cache,
act_range=convert_args['act_range'],
qkv_para=convert_args['llama_qkv_para'],
smoother=convert_args['llama_smoother'],
moe_config=args.moe_config,
lora_config=args.lora_config)
safetensors.torch.save_file(
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
if args.workers == 1:
for rank in range(world_size):
covert_and_save(rank, convert_args)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank, convert_args)
for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()