TensorRT-LLMs/examples/whisper/weight.py
Kaiyu Xie eb8f26c7e4
Update TensorRT-LLM (#1122)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-21 21:30:55 +08:00

447 lines
21 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_np
from tensorrt_llm.quantization import QuantMode
def fromfile(dir_path, name, shape=None, dtype=None):
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment *
torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[
np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
def trans_weight(weight):
return np.ascontiguousarray(weight)
def load_encoder_weight(tensorrt_llm_whisper,
model_metadata: dict,
model_params: dict,
n_layer: int,
use_gemm_woq_plugin=True):
tensorrt_llm.logger.info('Loading encoder weights from PT...')
quant_mode = getattr(tensorrt_llm_whisper, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
param_dtype = 'float16'
tensorrt_llm_whisper.positional_embedding.value = sinusoids(
model_metadata['n_audio_ctx'], model_metadata['n_audio_state']).numpy()
tensorrt_llm_whisper.conv1.weight.value = torch.unsqueeze(
model_params['encoder.conv1.weight'], -1).numpy()
tensorrt_llm_whisper.conv1.bias.value = model_params[
'encoder.conv1.bias'].numpy()
tensorrt_llm_whisper.conv2.weight.value = torch.unsqueeze(
model_params['encoder.conv2.weight'], -1).numpy()
tensorrt_llm_whisper.conv2.bias.value = model_params[
'encoder.conv2.bias'].numpy()
for i in range(n_layer):
tensorrt_llm_whisper.encoder_layers[
i].attention_layernorm.weight.value = model_params[
'encoder.blocks.' + str(i) + '.attn_ln.weight'].numpy()
tensorrt_llm_whisper.encoder_layers[
i].attention_layernorm.bias.value = model_params[
'encoder.blocks.' + str(i) + '.attn_ln.bias'].numpy()
t = torch.cat([
model_params['encoder.blocks.' + str(i) + '.attn.query.weight'],
model_params['encoder.blocks.' + str(i) + '.attn.key.weight'],
model_params['encoder.blocks.' + str(i) + '.attn.value.weight']
],
dim=0).numpy()
if t is not None:
dst = tensorrt_llm_whisper.encoder_layers[i].attention.qkv.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_whisper.encoder_layers[
i].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
bias_shape = model_params['encoder.blocks.' + str(i) +
'.attn.query.bias'].shape
dtype = model_params['encoder.blocks.' + str(i) +
'.attn.query.bias'].dtype
fused_bias = torch.cat([
model_params['encoder.blocks.' + str(i) + '.attn.query.bias'],
torch.zeros([*bias_shape], dtype=dtype),
model_params['encoder.blocks.' + str(i) + '.attn.value.bias']
],
dim=0).numpy()
tensorrt_llm_whisper.encoder_layers[
i].attention.qkv.bias.value = fused_bias
t = trans_weight(model_params['encoder.blocks.' + str(i) +
'.attn.out.weight'].numpy())
if t is not None:
dst = tensorrt_llm_whisper.encoder_layers[i].attention.dense.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_whisper.encoder_layers[
i].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
tensorrt_llm_whisper.encoder_layers[
i].attention.dense.bias.value = trans_weight(
model_params['encoder.blocks.' + str(i) +
'.attn.out.bias'].numpy())
tensorrt_llm_whisper.encoder_layers[
i].mlp_layernorm.weight.value = model_params[
'encoder.blocks.' + str(i) + '.mlp_ln.weight'].numpy()
tensorrt_llm_whisper.encoder_layers[
i].mlp_layernorm.bias.value = model_params['encoder.blocks.' +
str(i) +
'.mlp_ln.bias'].numpy()
t = trans_weight(model_params['encoder.blocks.' + str(i) +
'.mlp.0.weight'].numpy())
if t is not None:
dst = tensorrt_llm_whisper.encoder_layers[i].mlp.fc.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_whisper.encoder_layers[
i].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
tensorrt_llm_whisper.encoder_layers[i].mlp.fc.bias.value = trans_weight(
model_params['encoder.blocks.' + str(i) + '.mlp.0.bias'].numpy())
t = trans_weight(model_params['encoder.blocks.' + str(i) +
'.mlp.2.weight'].numpy())
if t is not None:
dst = tensorrt_llm_whisper.encoder_layers[i].mlp.proj.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_whisper.encoder_layers[
i].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
tensorrt_llm_whisper.encoder_layers[
i].mlp.proj.bias.value = trans_weight(
model_params['encoder.blocks.' + str(i) +
'.mlp.2.bias'].numpy())
tensorrt_llm_whisper.ln_post.weight.value = model_params[
'encoder.ln_post.weight'].numpy()
tensorrt_llm_whisper.ln_post.bias.value = model_params[
'encoder.ln_post.bias'].numpy()
def fuse_qkv(q, k, v):
qkv_weight = np.concatenate((q, k, v))
return qkv_weight
def load_decoder_weight(tllm_model,
model_params: dict,
use_gemm_woq_plugin=True):
tensorrt_llm.logger.info('Loading decoder weights from PT...')
quant_mode = getattr(tllm_model, 'quant_mode', QuantMode(0))
param_dtype = 'float16'
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
tllm_model.embedding.vocab_embedding.weight.value = trans_weight(
model_params['decoder.token_embedding.weight'].numpy())
tllm_model.lm_head.weight.value = trans_weight(
model_params['decoder.token_embedding.weight'].numpy())
if tllm_model.embedding.position_embedding:
tllm_model.embedding.position_embedding.weight.value = trans_weight(
model_params['decoder.positional_embedding'].numpy())
for i in range(tllm_model.num_layers):
layer = tllm_model.decoder_layers[i]
t = torch.cat([
model_params['decoder.blocks.' + str(i) + '.attn.query.weight'],
model_params['decoder.blocks.' + str(i) + '.attn.key.weight'],
model_params['decoder.blocks.' + str(i) + '.attn.value.weight']
],
dim=0).numpy()
if t is not None:
dst = layer.self_attention.qkv.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = layer.self_attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
t = trans_weight(model_params['decoder.blocks.' + str(i) +
'.attn.out.weight'].numpy())
if t is not None:
dst = layer.self_attention.dense.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = layer.self_attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
if tllm_model.has_attention_qkvo_bias:
bias_shape = model_params['decoder.blocks.' + str(i) +
'.attn.query.bias'].shape
dtype = model_params['decoder.blocks.' + str(i) +
'.attn.query.bias'].dtype
layer.self_attention.qkv.bias.value = fuse_qkv(
trans_weight(model_params['decoder.blocks.' + str(i) +
'.attn.query.bias'].numpy()),
torch.zeros([*bias_shape], dtype=dtype).numpy(),
trans_weight(model_params['decoder.blocks.' + str(i) +
'.attn.value.bias'].numpy()))
layer.self_attention.dense.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.attn.out.bias'].numpy())
if use_int8_kv_cache:
t = fromfile(
"quantize/1-gpu", 'model.decoder.blocks.' + str(i) +
'.attn.query_key_value.scale_y_quant_orig.bin', [1], np.float32)
layer.self_attention.kv_cache_scaling_factor.value = t
layer.self_attention_layernorm.weight.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.attn_ln.weight'].numpy())
layer.self_attention_layernorm.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) + '.attn_ln.bias'].numpy())
t = torch.cat([
model_params['decoder.blocks.' + str(i) +
'.cross_attn.query.weight'],
model_params['decoder.blocks.' + str(i) + '.cross_attn.key.weight'],
model_params['decoder.blocks.' + str(i) +
'.cross_attn.value.weight']
],
dim=0).numpy()
if t is not None:
dst = layer.cross_attention.qkv.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = layer.cross_attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
t = trans_weight(model_params['decoder.blocks.' + str(i) +
'.cross_attn.out.weight'].numpy())
if t is not None:
dst = layer.cross_attention.dense.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = layer.cross_attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
if tllm_model.has_attention_qkvo_bias:
bias_shape = model_params['decoder.blocks.' + str(i) +
'.cross_attn.query.bias'].shape
dtype = model_params['decoder.blocks.' + str(i) +
'.cross_attn.query.bias'].dtype
cross_attn_qkv_bias = fuse_qkv(
trans_weight(model_params['decoder.blocks.' + str(i) +
'.cross_attn.query.bias'].numpy()),
torch.zeros([*bias_shape], dtype=dtype).numpy(),
trans_weight(model_params['decoder.blocks.' + str(i) +
'.cross_attn.value.bias'].numpy()))
layer.cross_attention.qkv.bias.value = cross_attn_qkv_bias
layer.cross_attention.dense.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.cross_attn.out.bias'].numpy())
if use_int8_kv_cache:
t = fromfile(
"quantize/1-gpu", 'model.decoder.blocks.' + str(i) +
'.attn.query_key_value.scale_y_quant_orig.bin', [1], np.float32)
layer.self_attention.kv_cache_scaling_factor.value = t
layer.cross_attention_layernorm.weight.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.cross_attn_ln.weight'].numpy())
layer.cross_attention_layernorm.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.cross_attn_ln.bias'].numpy())
t = trans_weight(model_params['decoder.blocks.' + str(i) +
'.mlp.0.weight'].numpy())
if t is not None:
dst = layer.mlp.fc.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = layer.mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
t = trans_weight(model_params['decoder.blocks.' + str(i) +
'.mlp.2.weight'].numpy())
if t is not None:
dst = layer.mlp.proj.weight
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(np.ascontiguousarray(t.transpose(1, 0))),
plugin_weight_only_quant_type)
if not use_gemm_woq_plugin:
dst.value = torch.tensor(
np.ascontiguousarray(t.transpose(1, 0))).numpy().astype(
str_dtype_to_np(param_dtype))
else:
dst.value = processed_torch_weights.numpy()
scales = layer.mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = t
if tllm_model.has_mlp_bias:
layer.mlp.fc.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.mlp.0.bias'].numpy())
layer.mlp.proj.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) +
'.mlp.2.bias'].numpy())
layer.mlp_layernorm.weight.value = trans_weight(
model_params['decoder.blocks.' + str(i) + '.mlp_ln.weight'].numpy())
layer.mlp_layernorm.bias.value = trans_weight(
model_params['decoder.blocks.' + str(i) + '.mlp_ln.bias'].numpy())
if tllm_model.final_layernorm:
tllm_model.final_layernorm.weight.value = trans_weight(
model_params['decoder.ln.weight'].numpy())
tllm_model.final_layernorm.bias.value = trans_weight(
model_params['decoder.ln.bias'].numpy())