TensorRT-LLMs/tensorrt_llm/models/gemma/model.py
Kaiyu Xie eb8f26c7e4
Update TensorRT-LLM (#1122)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-21 21:30:55 +08:00

457 lines
18 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
from pathlib import Path
from typing import Optional
from transformers import AutoConfig
from tensorrt_llm import profiler
from tensorrt_llm._utils import pad_vocab_size
from tensorrt_llm.functional import RotaryScalingType, Tensor, recv, send
from tensorrt_llm.layers import (MOE, Attention, AttentionMaskType,
ColumnLinear, Embedding, FusedGatedMLP,
GatedMLP, MoeConfig, PositionEmbeddingType,
PromptTuningEmbedding, RmsNorm)
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.modeling_utils import (DecoderLayerList,
DecoderModelForCausalLM)
from tensorrt_llm.module import Module
from tensorrt_llm.plugin import init_all_reduce_helper
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime.lora_manager import LoraConfig
from tensorrt_llm.top_model_mixin import TopModelMixin
from .weight import load_from_fp8_llama, load_from_hf_llama
class GemmaDecoderLayer(Module):
def __init__(self, config, layer_idx):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
self.attention = Attention(
config.hidden_size,
config.num_attention_heads,
config.num_key_value_heads,
attention_head_size=config.head_size,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
enable_pos_shift=config.enable_pos_shift,
dense_context_fmha=config.dense_context_fmha,
)
# max_lora_rank=config.max_lora_rank)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
ClsMLP = GatedMLP
mlp_kwargs = {}
if config.moe_num_experts > 1:
ClsMLP = MOE
mlp_kwargs = {
"moe_config":
MoeConfig(
config.moe_num_experts,
config.moe_top_k,
config.moe_tp_mode,
config.moe_normalization_mode,
),
"tp_rank":
config.mapping.tp_rank,
}
elif config.use_fused_mlp:
ClsMLP = FusedGatedMLP
self.mlp = ClsMLP(
hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
# max_lora_rank=config.max_lora_rank,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(
self,
hidden_states,
attention_mask=None,
medusa_packed_mask=None, # For Medusa support
medusa_position_offsets=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
medusa_packed_mask=medusa_packed_mask, # For Medusa support
medusa_position_offsets=medusa_position_offsets,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class GemmaModel(Module):
def __init__(self, config) -> None:
super().__init__()
init_all_reduce_helper()
self.mapping = config.mapping
self.use_prompt_tuning = config.use_prompt_tuning
EmbeddingCls = PromptTuningEmbedding if config.use_prompt_tuning else Embedding
if self.mapping.is_first_pp_rank():
self.vocab_embedding = EmbeddingCls(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
dtype=config.dtype,
tp_size=self.mapping.tp_size
if config.use_parallel_embedding else 1,
tp_group=self.mapping.tp_group
if config.use_parallel_embedding else None,
sharding_dim=config.embedding_sharding_dim,
tp_rank=self.mapping.tp_rank,
)
self.layers = DecoderLayerList(GemmaDecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(
self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
medusa_position_offsets=None, # For Medusa support
medusa_packed_mask=None, # For Medusa support
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
kv_cache_params.fill_none_tensor_list(len(self.layers))
if use_cache:
presents = []
ptuning_args = []
# if self.use_prompt_tuning:
# ptuning_args = [
# prompt_embedding_table, prompt_tasks, prompt_vocab_size
# ]
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
# all_reduce_workspace=all_reduce_workspace,
lora_params=lora_params,
# medusa_position_offsets=medusa_position_offsets,
# medusa_packed_mask=medusa_packed_mask,
)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class GemmaForCausalLM(DecoderModelForCausalLM, TopModelMixin):
def __init__(self, config):
self.check_config(config)
transformer = GemmaModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
@classmethod
def from_hugging_face(cls,
hf_model_dir,
dtype='float16',
mapping: Optional[Mapping] = None,
quant_mode: Optional[QuantMode] = None,
**kwargs):
import transformers
from transformers import LlamaConfig
from ...models.modeling_utils import PretrainedConfig
cfg = LlamaConfig.from_pretrained(hf_model_dir)
num_kv_heads = cfg.num_key_value_heads if hasattr(cfg, "num_key_value_heads") \
else cfg.num_attention_heads
if mapping is None:
mapping = Mapping()
if quant_mode is None:
quant_mode = QuantMode(0)
cfg.mapping = mapping
cfg.dtype = dtype
cfg.quant_mode = quant_mode
moe_config = kwargs.get("moe_config", MoeConfig())
cfg.norm_epsilon = cfg.rms_norm_eps
config = {
'architecture': cfg.architectures[0],
'dtype': cfg.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': cfg.num_hidden_layers,
'num_attention_heads': cfg.num_attention_heads,
'hidden_size': cfg.hidden_size,
'intermediate_size': cfg.intermediate_size,
'num_key_value_heads': cfg.num_key_value_heads,
'vocab_size': cfg.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': cfg.max_position_embeddings,
'hidden_act': cfg.hidden_act,
'rotary_base': getattr(cfg, 'rotary_base', 10000.0),
'rotary_scaling': getattr(cfg, 'rotary_scaling', None),
'norm_epsilon': cfg.rms_norm_eps,
'quantization': quant_mode.to_dict(),
'mapping': {
'world_size': mapping.world_size,
'tp_size': mapping.world_size,
},
'use_parallel_embedding': kwargs.get("use_parallel_embedding",
False),
'embedding_sharding_dim': kwargs.get("embedding_sharding_dim", 0),
'use_prompt_tuning': kwargs.get("use_prompt_tuning", False),
'moe_num_experts': moe_config.num_experts,
'moe_top_k': moe_config.top_k,
'moe_tp_mode': moe_config.tp_mode,
'moe_normalization_mode': moe_config.normalization_mode,
'use_fused_mlp': kwargs.get("use_fused_mlp", False),
'enable_pos_shift': kwargs.get("enable_pos_shift", False),
'dense_context_fmha': kwargs.get("dense_context_fmha", False),
}
if quant_mode.is_int4_weight_only_per_group():
config['quantization'].update({
'zero': False,
'pre_quant_scale': True,
'exclude_modules': [],
})
tllm_llama = GemmaForCausalLM(PretrainedConfig.from_dict(config))
q_weights = {}
if quant_mode.has_any_quant():
q_weights = tllm_llama._quantize(hf_model_dir, dtype, cfg, **kwargs)
# For debug purpose, skip weights loading to be faster
if kwargs.get("skip_loading_weights", False):
return tllm_llama
# TODO: support mixtral
# weights already loaded in _quantize for int4 weight only
if not quant_mode.is_int4_weight_only_per_group():
hf_model = transformers.LlamaForCausalLM
profiler.start("Loading weights from HF")
hf_llama = hf_model.from_pretrained(
hf_model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu",
"embed_tokens": "cpu",
"layers": "cpu",
"norm": "cpu",
}, # Load to CPU memory
torch_dtype='auto',
)
weights = load_from_hf_llama(
tllm_llama,
hf_llama,
mapping=mapping,
dtype=dtype,
# TODO: these shall be outside from_hugging_face too.
use_gemm_woq_plugin=kwargs.get("use_gemm_woq_plugin", False),
lora_config=kwargs.get("lora_config", LoraConfig()),
)
profiler.stop("Loading weights from HF")
del hf_llama
weights.update(q_weights)
tllm_llama.load(weights)
else:
tllm_llama.load(q_weights)
return tllm_llama
def _quantize(self, hf_model_dir, dtype, cfg, **kwargs):
'''Given the quant_mode set in the Module object, read from given hf model
call AMMO to generate quantization scales, and set the scales back the module parameters.
'''
# use self destructed temporary path if kwargs[quantization_cache_dir] is not specified
# sometimes the quantization checkpoint path needs to be saved for debug purpose
quantized_temp_dir = tempfile.TemporaryDirectory("llama-quantized")
quantized_checkpoint_path = kwargs.get("quantization_cache_dir",
quantized_temp_dir.name)
quantize_lm_head = kwargs.get("quantize_lm_head", False)
quant_mode = cfg.quant_mode
ammo_qformat = None
calib_size = None
if quant_mode.has_fp8_qdq() or quant_mode.has_fp8_kv_cache():
ammo_qformat = 'fp8'
calib_size = 512
# TODO: how to distinguish from quant_mode about int4_awq or int4_gptq?
elif quant_mode.is_int4_weight_only_per_group():
ammo_qformat = 'int4_awq'
calib_size = 32
assert ammo_qformat is not None
# local import to avoid pytest issue when importing AMMO and transformers lib
from .quantize import quantize_llama_and_export
quantize_llama_and_export(hf_model_dir,
quantized_checkpoint_path,
ammo_qformat,
dtype,
calib_size=calib_size,
quantize_lm_head=quantize_lm_head)
ckpt = Path(quantized_checkpoint_path) / "llama_tp1_rank0.npz"
assert ckpt.exists(), f"The expecting checkpoint path {ckpt} does not exist" \
"it's likely quantization failed, pls check error logs"
hf_config = AutoConfig.from_pretrained(hf_model_dir,
trust_remote_code=True)
if ammo_qformat == 'fp8':
return load_from_fp8_llama(
str(ckpt),
hf_config,
cfg.mapping,
fp8_kv_cache=quant_mode.has_fp8_kv_cache())
else:
return load_from_awq_llama(str(ckpt),
hf_config,
cfg.mapping,
dtype=dtype)
# llama specific setters, user shall has the chance to change the module attributes after
# from_hugging_face factory method created the model when these attributes is not included in the huggingface checkpoint
def rotary_base(self, val):
for decoder in self.layers:
decoder.attention.rotary_embedding_base = val
return self
def rotary_scaling(self, scaling_type, factor):
# TODO: what if there are some other behaviors triggered by the these changes?
# should implement these assignment as setters of the Attention Module
assert scaling_type in ("linear", "dynamic"), f"Got {scaling_type}"
assert factor > 1.0, f"Got {factor}"
for decoder in self.layers:
decoder.attention.rotary_embedding_scale_type = RotaryScalingType.linear if scaling_type == "linear" else RotaryScalingType.dynamic
decoder.attention.rotary_embedding_scale = factor
return self
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.set_weight_only_groupwise_quant_matmul_plugin()
return plugin_config
def check_config(self, config):
config.set_if_not_exist('use_parallel_embedding', False)
config.set_if_not_exist('embedding_sharding_dim', 0)
config.set_if_not_exist('mlp_bias', False)
config.set_if_not_exist('attn_bias', False)
config.set_if_not_exist('rotary_base', 10000.0)
config.set_if_not_exist('rotary_scaling', None)
config.set_if_not_exist('enable_pos_shift', False)
config.set_if_not_exist('dense_context_fmha', False)
config.set_if_not_exist('use_fused_mlp', False)
config.set_if_not_exist('moe_num_experts', 0)
config.set_if_not_exist('moe_top_k', 0)
config.set_if_not_exist('moe_tp_mode',
MoeConfig.ParallelismMode.TENSOR_PARALLEL)
config.set_if_not_exist(
'moe_normalization_mode',
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)