TensorRT-LLMs/cpp/kernels/xqa/tma.h
Ming Wei ed887940d4
infra: open source XQA kernels (#3762)
Replace libtensorrt_llm_nvrtc_wrapper.so with its source code, which
consists of two parts:

1. NVRTC glue code
2. XQA kernel code

During TensorRT-LLM build, XQA kernel code is embedded as C++ arries via
gen_cpp_header.py and passed to NVRTC for JIT compilation.

Signed-off-by: Ming Wei <2345434+ming-wei@users.noreply.github.com>
2025-04-30 18:05:15 +08:00

263 lines
10 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: NVIDIA TensorRT Source Code License Agreement
*
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
* property and proprietary rights in and to this material, related
* documentation and any modifications thereto. Any use, reproduction,
* disclosure or distribution of this material and related documentation
* without an express license agreement from NVIDIA CORPORATION or
* its affiliates is strictly prohibited.
*/
#pragma once
#include "cuda_hint.cuh"
#include "utils.h"
#ifndef GENERATE_CUBIN
#include <cstdint>
#include <cuda.h>
#include <cuda_runtime.h>
#endif
#include "barriers.cuh"
enum class StateSpace
{
kCONSTANT,
kPARAMETER,
kGENERIC
};
#ifdef GENERATE_CUBIN
#define CU_TENSOR_MAP_NUM_QWORDS 16
typedef struct CUtensorMap_st
{
#if defined(__cplusplus) && (__cplusplus >= 201103L)
alignas(64)
#elif __STDC_VERSION__ >= 201112L
_Alignas(64)
#endif
uint64_t opaque[CU_TENSOR_MAP_NUM_QWORDS];
} CUtensorMap;
#endif
namespace tma
{
__device__ inline void load1DAsync(void* dst, void const* src, uint32_t nbBytes, CtaBarrier& bar)
{
asm volatile("cp.async.bulk.shared::cluster.global.mbarrier::complete_tx::bytes [%0], [%1], %2, [%3];\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(src)), "r"(nbBytes),
"l"(__cvta_generic_to_shared(&bar)));
}
template <uint32_t nbDims>
__device__ inline void loadAsync(void* dst, CUtensorMap const& tensorMap, DimsLE<nbDims> offset, CtaBarrier& bar)
{
if constexpr (nbDims == 1)
{
// nbDims==1 does not need tensormap and should just use cp.async.bulk
asm volatile(
"cp.async.bulk.tensor.1d.shared::cluster.global.mbarrier::complete_tx::bytes.tile [%0], [%1, {%2}], [%3];\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"l"(__cvta_generic_to_shared(&bar))
: "memory");
}
else if constexpr (nbDims == 2)
{
asm volatile(
"cp.async.bulk.tensor.2d.shared::cluster.global.mbarrier::complete_tx::bytes.tile [%0], [%1, {%2, %3}], "
"[%4];\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "l"(__cvta_generic_to_shared(&bar))
: "memory");
}
else if constexpr (nbDims == 3)
{
asm volatile(
"cp.async.bulk.tensor.3d.shared::cluster.global.mbarrier::complete_tx::bytes.tile [%0], [%1, {%2, %3, "
"%4}], [%5];\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "r"(offset[2]), "l"(__cvta_generic_to_shared(&bar))
: "memory");
}
else if constexpr (nbDims == 4)
{
asm volatile(
"cp.async.bulk.tensor.4d.shared::cluster.global.mbarrier::complete_tx::bytes.tile [%0], [%1, {%2, %3, %4, "
"%5}], [%6];\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "r"(offset[2]), "r"(offset[3]), "l"(__cvta_generic_to_shared(&bar))
: "memory");
}
else if constexpr (nbDims == 5)
{
asm volatile(
"cp.async.bulk.tensor.5d.shared::cluster.global.mbarrier::complete_tx::bytes.tile [%0], [%1, {%2, %3, %4, "
"%5, %6}], [%7];\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "r"(offset[2]), "r"(offset[3]), "r"(offset[4]), "l"(__cvta_generic_to_shared(&bar))
: "memory");
}
else
{
static_assert(nbDims >= 1 && nbDims <= 5);
}
}
template <uint32_t nbDims>
__device__ inline void loadAsync(
void* dst, CUtensorMap const& tensorMap, DimsLE<nbDims> offset, CtaBarrier& bar, uint64_t cacheHint)
{
if constexpr (nbDims == 1)
{
// nbDims==1 does not need tensormap and should just use cp.async.bulk
asm volatile(
"cp.async.bulk.tensor.1d.shared::cluster.global.mbarrier::complete_tx::bytes.tile.L2::cache_hint [%0], "
"[%1, {%2}], [%3], %4;\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"l"(__cvta_generic_to_shared(&bar)), "l"(cacheHint)
: "memory");
}
else if constexpr (nbDims == 2)
{
asm volatile(
"cp.async.bulk.tensor.2d.shared::cluster.global.mbarrier::complete_tx::bytes.tile.L2::cache_hint [%0], "
"[%1, {%2, %3}], [%4], %5;\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "l"(__cvta_generic_to_shared(&bar)), "l"(cacheHint)
: "memory");
}
else if constexpr (nbDims == 3)
{
asm volatile(
"cp.async.bulk.tensor.3d.shared::cluster.global.mbarrier::complete_tx::bytes.tile.L2::cache_hint [%0], "
"[%1, {%2, %3, %4}], [%5], %6;\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "r"(offset[2]), "l"(__cvta_generic_to_shared(&bar)), "l"(cacheHint)
: "memory");
}
else if constexpr (nbDims == 4)
{
asm volatile(
"cp.async.bulk.tensor.4d.shared::cluster.global.mbarrier::complete_tx::bytes.tile.L2::cache_hint [%0], "
"[%1, {%2, %3, %4, %5}], [%6], %7;\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "r"(offset[2]), "r"(offset[3]), "l"(__cvta_generic_to_shared(&bar)), "l"(cacheHint)
: "memory");
}
else if constexpr (nbDims == 5)
{
asm volatile(
"cp.async.bulk.tensor.5d.shared::cluster.global.mbarrier::complete_tx::bytes.tile.L2::cache_hint [%0], "
"[%1, {%2, %3, %4, %5, %6}], [%7], %8;\n"
:
: "l"(__cvta_generic_to_shared(dst)), "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]),
"r"(offset[1]), "r"(offset[2]), "r"(offset[3]), "r"(offset[4]), "l"(__cvta_generic_to_shared(&bar)),
"l"(cacheHint)
: "memory");
}
else
{
static_assert(nbDims >= 1 && nbDims <= 5);
}
}
template <uint32_t nbDims>
__device__ inline void storeAsync(CUtensorMap const& tensorMap, DimsLE<nbDims> const& offset, void* src)
{
if constexpr (nbDims == 1)
{
// nbDims==1 does not need tensormap and should just use cp.async.bulk
asm volatile("cp.async.bulk.tensor.1d.global.shared::cta.bulk_group.tile [%0, {%1}], [%2];\n"
:
: "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]), "l"(__cvta_generic_to_shared(src))
: "memory");
}
else if constexpr (nbDims == 2)
{
asm volatile("cp.async.bulk.tensor.2d.global.shared::cta.bulk_group.tile [%0, {%1, %2}], [%3];\n"
:
: "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]), "r"(offset[1]),
"l"(__cvta_generic_to_shared(src))
: "memory");
}
else if constexpr (nbDims == 3)
{
asm volatile("cp.async.bulk.tensor.2d.global.shared::cta.bulk_group.tile [%0, {%1, %2, %3}], [%4];\n"
:
: "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]), "r"(offset[1]), "r"(offset[2]),
"l"(__cvta_generic_to_shared(src))
: "memory");
}
else if constexpr (nbDims == 4)
{
asm volatile("cp.async.bulk.tensor.2d.global.shared::cta.bulk_group.tile [%0, {%1, %2, %3, %4}], [%5];\n"
:
: "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]), "r"(offset[1]), "r"(offset[2]),
"r"(offset[3]), "l"(__cvta_generic_to_shared(src))
: "memory");
}
else if constexpr (nbDims == 5)
{
asm volatile("cp.async.bulk.tensor.2d.global.shared::cta.bulk_group.tile [%0, {%1, %2, %3, %4, %5}], [%6];\n"
:
: "l"(reinterpret_cast<uint64_t>(&tensorMap)), "r"(offset[0]), "r"(offset[1]), "r"(offset[2]),
"r"(offset[3]), "r"(offset[4]), "l"(__cvta_generic_to_shared(src))
: "memory");
}
else
{
static_assert(nbDims >= 1 && nbDims <= 5);
}
}
__device__ inline void setTensorMapGlbAddr(CUtensorMap& tensorMap, void* ptr)
{
asm volatile("tensormap.replace.tile.global_address.global.b1024.b64 [%0], %1;\n" ::"l"(&tensorMap), "l"(ptr)
: "memory");
}
__device__ inline void commitGroup()
{
asm volatile("cp.async.bulk.commit_group;\n");
}
// wait until only targetNbInFlightGroups groups are still in-flight.
template <uint32_t targetNbInFlightGroups>
__device__ inline void waitGroup()
{
asm volatile("cp.async.bulk.wait_group %0;\n" ::"n"(targetNbInFlightGroups));
}
__device__ inline void prefetchTensorMap(CUtensorMap const& tensorMap, StateSpace loc = StateSpace::kGENERIC)
{
assert(reinterpret_cast<uint64_t>(&tensorMap) % alignof(CUtensorMap) == 0);
switch (loc)
{
case StateSpace::kCONSTANT:
asm volatile("prefetch.const.tensormap [%0];\n" ::"l"(__cvta_generic_to_constant(&tensorMap)) : "memory");
break;
case StateSpace::kPARAMETER:
asm volatile("prefetch.param.tensormap [%0];\n" ::"l"(__cvta_generic_to_grid_constant(&tensorMap)) : "memory");
break;
case StateSpace::kGENERIC:
asm volatile("prefetch.tensormap [%0];\n" ::"l"(reinterpret_cast<uint64_t>(&tensorMap)) : "memory");
break;
default: asm volatile("trap;\n");
}
}
} // namespace tma