TensorRT-LLMs/jenkins/L0_Test.groovy
Pengbo Wang @ NVIDIA ef0d06df58
[None][chore] Fix kernel launch param and add TRTLLM MoE backend test (#7524)
Signed-off-by: Pengbo Wang <221450789+pengbowang-nv@users.noreply.github.com>
2025-09-09 23:45:35 +08:00

2709 lines
116 KiB
Groovy

@Library(['bloom-jenkins-shared-lib@main', 'trtllm-jenkins-shared-lib@main']) _
import java.lang.InterruptedException
import groovy.transform.Field
import groovy.json.JsonSlurper
import groovy.json.JsonOutput
import com.nvidia.bloom.KubernetesManager
import com.nvidia.bloom.Constants
import com.nvidia.bloom.CloudManager
import com.nvidia.bloom.SlurmConfig
import com.nvidia.bloom.SlurmCluster
import com.nvidia.bloom.SlurmPartition
import com.nvidia.bloom.Utils
import org.jenkinsci.plugins.workflow.cps.CpsThread
import org.jsoup.Jsoup
import org.jenkinsci.plugins.pipeline.modeldefinition.Utils as jUtils
// LLM repository configuration
withCredentials([string(credentialsId: 'default-llm-repo', variable: 'DEFAULT_LLM_REPO')]) {
LLM_REPO = env.gitlabSourceRepoHttpUrl ? env.gitlabSourceRepoHttpUrl : "${DEFAULT_LLM_REPO}"
}
LLM_ROOT = "llm"
ARTIFACT_PATH = env.artifactPath ? env.artifactPath : "sw-tensorrt-generic/llm-artifacts/${JOB_NAME}/${BUILD_NUMBER}"
UPLOAD_PATH = env.uploadPath ? env.uploadPath : "sw-tensorrt-generic/llm-artifacts/${JOB_NAME}/${BUILD_NUMBER}"
X86_64_TRIPLE = "x86_64-linux-gnu"
AARCH64_TRIPLE = "aarch64-linux-gnu"
// default package name
linuxPkgName = ( env.targetArch == AARCH64_TRIPLE ? "tensorrt-llm-sbsa-release-src-" : "tensorrt-llm-release-src-" ) + (env.artifactCommit ? env.artifactCommit : env.gitlabCommit) + ".tar.gz"
// Container configuration
// available tags can be found in: https://urm.nvidia.com/artifactory/sw-tensorrt-docker/tensorrt-llm/
// [base_image_name]-[arch]-[os](-[python_version])-[trt_version]-[torch_install_type]-[stage]-[date]-[mr_id]
LLM_DOCKER_IMAGE = env.dockerImage
LLM_ROCKYLINUX8_PY310_DOCKER_IMAGE = env.wheelDockerImagePy310
LLM_ROCKYLINUX8_PY312_DOCKER_IMAGE = env.wheelDockerImagePy312
// DLFW torch image
DLFW_IMAGE = "urm.nvidia.com/docker/nvidia/pytorch:25.06-py3"
//Ubuntu base image
UBUNTU_22_04_IMAGE = "urm.nvidia.com/docker/ubuntu:22.04"
UBUNTU_24_04_IMAGE = "urm.nvidia.com/docker/ubuntu:24.04"
POD_TIMEOUT_SECONDS_TEST = env.podTimeoutSeconds ? env.podTimeoutSeconds : "21600"
POD_TIMEOUT_SECONDS_BUILD = env.podTimeoutSeconds ? env.podTimeoutSeconds : "43200"
POD_TIMEOUT_SECONDS_SLURM = env.podTimeoutSeconds ? env.podTimeoutSeconds : "79200" // Use 22 hours to allow for 2 hour of buffer.
// Literals for easier access.
@Field
def TARNAME = "tarName"
@Field
def VANILLA_CONFIG = "Vanilla"
@Field
def SINGLE_DEVICE_CONFIG = "SingleDevice"
@Field
def LLVM_CONFIG = "LLVM"
@Field
LINUX_AARCH64_CONFIG = "linux_aarch64"
@Field
def PYBIND_CONFIG = "Pybind"
@Field
def BUILD_CONFIGS = [
// Vanilla TARNAME is used for packaging in runLLMPackage
(VANILLA_CONFIG) : [(TARNAME) : "TensorRT-LLM.tar.gz"],
(SINGLE_DEVICE_CONFIG) : [(TARNAME) : "single-device-TensorRT-LLM.tar.gz"],
(LLVM_CONFIG) : [(TARNAME) : "llvm-TensorRT-LLM.tar.gz"],
(LINUX_AARCH64_CONFIG) : [(TARNAME) : "TensorRT-LLM-GH200.tar.gz"],
(PYBIND_CONFIG) : [(TARNAME) : "pybind-TensorRT-LLM.tar.gz"],
]
// TODO: Move common variables to an unified location
BUILD_CORES_REQUEST = "8"
BUILD_CORES_LIMIT = "8"
BUILD_MEMORY_REQUEST = "48Gi"
BUILD_MEMORY_LIMIT = "64Gi"
BUILD_JOBS = "8"
SLURM_CORES_REQUEST = "1"
SLURM_CORES_LIMIT = "1"
SLURM_MEMORY_REQUEST = "8Gi"
SLURM_MEMORY_LIMIT = "12Gi"
TESTER_CORES = "12"
TESTER_MEMORY = "96Gi"
CCACHE_DIR="/mnt/sw-tensorrt-pvc/scratch.trt_ccache/llm_ccache"
MODEL_CACHE_DIR="/scratch.trt_llm_data/llm-models"
// ENABLE_NGC_DEVEL_IMAGE_TEST is currently disabled in the Jenkins BuildDockerImageSanityTest job config
ENABLE_NGC_DEVEL_IMAGE_TEST = params.enableNgcDevelImageTest ?: false
ENABLE_NGC_RELEASE_IMAGE_TEST = params.enableNgcReleaseImageTest ?: false
COMMON_SSH_OPTIONS = "-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null -o ServerAliveInterval=60 -o ServerAliveCountMax=5"
def uploadResults(def pipeline, SlurmCluster cluster, String nodeName, String stageName){
withCredentials([usernamePassword(credentialsId: 'svc_tensorrt', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD')]) {
def remote = [
ip : cluster.ip,
host : cluster.host,
user : "${pipeline.USERNAME}",
passwd : "${pipeline.PASSWORD}",
allowAnyHosts: true,
]
Utils.exec(pipeline, script: "apt-get update && apt-get install -y sshpass openssh-client")
pipeline.stage('Submit Test Results') {
sh "mkdir -p ${stageName}"
def resultsFilePath = "/home/svc_tensorrt/bloom/scripts/${nodeName}/results/results.xml"
def downloadResultCmd = "sshpass -p '${remote.passwd}' scp -r -p ${COMMON_SSH_OPTIONS} ${remote.user}@${remote.host}:${resultsFilePath} ${stageName}/"
def downloadSucceed = sh(script: downloadResultCmd, returnStatus: true) == 0
if (downloadSucceed) {
sh "ls ${stageName}"
echo "Upload test results."
sh "tar -czvf results-${stageName}.tar.gz ${stageName}/"
trtllm_utils.uploadArtifacts(
"results-${stageName}.tar.gz",
"${UPLOAD_PATH}/test-results/"
)
junit(testResults: "${stageName}/results*.xml")
} else {
println("No results xml to submit")
}
}
}
}
//TODO: consolidate slurm related code for both multi nodes and single nodes
def cleanUpNodeResourcesMultiNodes(def pipeline, SlurmCluster cluster, String jobUID, String slurmOutputFile) {
withCredentials([usernamePassword(credentialsId: 'svc_tensorrt', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD')]) {
def remote = [
ip : cluster.ip,
host : cluster.host,
user : "${pipeline.USERNAME}",
passwd : "${pipeline.PASSWORD}",
allowAnyHosts: true,
]
Utils.exec(pipeline, script: "apt-get update && apt-get install -y sshpass openssh-client")
def slurmJobID = Utils.exec(
pipeline,
script: Utils.sshUserCmd(
remote,
"\"sed -n " +
"-e 's/.*Submitted batch job \\([0-9]\\+\\).*/\\1/p' " +
"-e 's/.*srun: job \\([0-9]\\+\\) queued.*/\\1/p' " +
"-e 's/.*srun: job \\([0-9]\\+\\) has been allocated.*/\\1/p' " +
"-e 's/.*SLURM_JOB_ID=\\([0-9]\\+\\).*/\\1/p' " +
"-e 's/.*SLURM_JOBID=\\([0-9]\\+\\).*/\\1/p' " +
"${slurmOutputFile} | tail -n1 || true\""
),
returnStdout: true
).trim()
Utils.exec(pipeline, script: "echo Slurm job ID: ${slurmJobID}")
Utils.exec(pipeline, script: "echo Sleeping to allow Slurm job completion; sleep 30")
Utils.exec(
pipeline,
script: Utils.sshUserCmd(
remote,
"\"scancel ${slurmJobID} || true; sacct -j ${slurmJobID} --format=JobID,JobName%100,Partition%15,Account%15,State,ExitCode,NodeList%30 || true; scontrol show job ${slurmJobID} || true\""
)
)
Utils.exec(pipeline, script: "echo Sleeping to allow Slurm job termination; sleep 30")
Utils.exec(
pipeline,
script: Utils.sshUserCmd(
remote,
"\"rm -rf /home/svc_tensorrt/bloom/scripts/${jobUID} || true\""
)
)
if (!slurmJobID || !slurmJobID.isNumber()) {
Utils.exec(pipeline, script: Utils.sshUserCmd(remote, "\"cat ${slurmOutputFile} || true\""))
echo "Slurm job did not submit successfully. No job ID found."
} else {
// The original Slurm output file name is like "slurm-%j-*.out", we need to replace the %j with the real job ID.
def newSlurmOutputFile = slurmOutputFile.replace("%j", slurmJobID)
Utils.exec(pipeline, script: Utils.sshUserCmd(remote, "\"mv ${slurmOutputFile} ${newSlurmOutputFile} || true\""))
}
Utils.exec(pipeline, script: "echo Slurm job ID: ${slurmJobID} cleaned up")
}
}
def cleanUpNodeResources(def pipeline, SlurmCluster cluster, String nodeName, String slurmJobID) {
withCredentials([usernamePassword(credentialsId: 'svc_tensorrt', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD')]) {
def remote = [
ip : cluster.ip,
host : cluster.host,
user : "${pipeline.USERNAME}",
passwd : "${pipeline.PASSWORD}",
allowAnyHosts: true,
]
Utils.exec(pipeline, script: "echo Sleeping to allow docker stop; sleep 30")
CloudManager.destroyNode(nodeName)
Utils.exec(pipeline, script: "echo Sleeping to allow node destruction; sleep 30")
Utils.exec(pipeline, script: "apt-get update && apt-get install -y sshpass openssh-client")
Utils.exec(pipeline, script: "echo Slurm job ID: ${slurmJobID}")
Utils.exec(
pipeline,
script: Utils.sshUserCmd(
remote,
"\"scancel ${slurmJobID} || true; sacct -j ${slurmJobID} --format=JobID,JobName%100,Partition%15,Account%15,State,ExitCode,NodeList%30 || true; scontrol show job ${slurmJobID} || true\""
)
)
Utils.exec(pipeline, script: "echo Sleeping to allow Slurm job termination; sleep 30")
Utils.exec(
pipeline,
script: Utils.sshUserCmd(
remote,
"\"rm -rf /home/svc_tensorrt/bloom/scripts/agent-${nodeName}.jar /home/svc_tensorrt/bloom/scripts/${nodeName}-slurm_jenkins_agent_setup.sh || true\""
)
)
Utils.exec(pipeline, script: "echo Slurm job ID: ${slurmJobID} cleaned up")
}
}
def executeLLMTestOnSlurm(pipeline, platform, testList, config=VANILLA_CONFIG, perfMode=false, stageName="Undefined", splitId=1, splits=1, skipInstallWheel=false, cpver="cp312", runner)
{
runner {
// TODO: refactor the finallyRunner to reuse within slurm or nonslurm job.
cacheErrorAndUploadResult(stageName, {
runLLMTestlistOnPlatformImpl(pipeline, platform, testList, config, perfMode, stageName, splitId, splits, skipInstallWheel, cpver)
}, {
// If the execution test list is null, remove the test result xml
sh """
ls -all ${stageName}/
if ! grep -q '<testcase' ${stageName}/results.xml; then
rm ${stageName}/results.xml || true
fi
"""
def llmPath = sh (script: "realpath .", returnStdout: true).trim()
def llmSrc = "${llmPath}/${LLM_ROOT}${config}/TensorRT-LLM/src"
// CPP tests will generate test result in ${llmSrc}/cpp/build_backup/, move these files to job result folder
sh "ls -all ${llmSrc}/cpp/build_backup/ || true"
sh "ls -all ${llmSrc}/cpp/build/ || true"
// Sed for CPP test result
sh "cd ${llmSrc}/cpp/build_backup/ && sed -i 's/\" classname=\"/\" classname=\"${stageName}./g' *.xml || true"
sh "cd ${llmSrc}/cpp/build_backup/ && sed -i 's/testsuite name=\"[^\"]*\"/testsuite name=\"${stageName}\"/g' *.xml || true"
// Sed for Pytest result
sh "cd ${stageName} && sed -i 's/testsuite name=\"pytest\"/testsuite name=\"${stageName}\"/g' *.xml || true"
// Copy CPP test result
sh "cp ${llmSrc}/cpp/build_backup/*.xml ${stageName} || true"
sh "ls ${stageName}/ -all"
})
}
}
def runLLMTestlistOnSlurm(pipeline, platform, testList, config=VANILLA_CONFIG, perfMode=false, stageName="Undefined", splitId=1, splits=1, gpuCount=1, skipInstallWheel=false, cpver="cp312")
{
SlurmPartition partition = SlurmConfig.partitionConfig[platform] as SlurmPartition
SlurmCluster cluster = SlurmConfig.clusterConfig[partition.clusterName]
// Create a unique suffix for the node name and workspace
String customSuffix = "${env.BUILD_TAG}-${UUID.randomUUID().toString().replaceAll("-", "").substring(0, 6)}".toLowerCase()
def nodeName = "${cluster.host}-test-${customSuffix}"
def customWorkspace = "/tmp/${nodeName}"
def nodeSecret = CloudManager.createNode(nodeName, customWorkspace)
def slurmJobID = null
try {
// Run ssh command to start node in desired cluster via SLURM
withCredentials([usernamePassword(credentialsId: 'svc_tensorrt', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD')]) {
def remote = [
ip : cluster.ip,
host : cluster.host,
user : "${pipeline.USERNAME}",
passwd : "${pipeline.PASSWORD}",
allowAnyHosts: true,
]
Utils.exec(pipeline, script: "apt-get update && apt-get install -y sshpass openssh-client")
stage('Request Node via SLURM') {
println("Selected Cluster: ${cluster.name}")
def jenkinsSetupPath = Utils.copyLibraryResource(pipeline, "slurm_jenkins_agent_setup.sh")
Utils.exec(pipeline, script: "chmod +x ${jenkinsSetupPath}", returnStdout: true)
Utils.exec(pipeline, script: "sshpass -p '${remote.passwd}' scp -r -p ${COMMON_SSH_OPTIONS} ${jenkinsSetupPath} ${remote.user}@${remote.host}:~/bloom/scripts/${nodeName}-slurm_jenkins_agent_setup.sh", numRetries: 3)
Utils.exec(pipeline, script: "cat ${jenkinsSetupPath}")
def slurmSubmitOutput = Utils.exec(
pipeline,
timeout: false,
script: Utils.sshUserCmd(
remote,
"\"${SlurmConfig.generateCommand(cluster, partition, nodeSecret, nodeName, Jenkins.instance.rootUrl)}\""
),
returnStdout: true,
numRetries: 3
)
def jobIDs = slurmSubmitOutput
.readLines()
.collect { it.trim() }
.collectMany { line ->
def ids = []
def m1 = (line =~ /Submitted batch job (\d+)/)
if (m1) ids << m1[0][1] // Extract the first captured group
def m2 = (line =~ /srun: job (\d+) (queued|has been allocated)/)
if (m2) ids << m2[0][1] // Extract the first captured group
def m3 = (line =~ /SLURM_JOB_ID=(\d+)/)
if (m3) ids << m3[0][1] // Extract the first captured group
def m4 = (line =~ /SLURM_JOBID=(\d+)/)
if (m4) ids << m4[0][1] // Extract the first captured group
return ids
}
slurmJobID = jobIDs ? jobIDs[-1] : null
if (!slurmJobID || !slurmJobID.isNumber()) {
echo "Slurm job did not submit successfully. No job ID found.\nSubmission output:\n${slurmSubmitOutput}"
}
Utils.exec(pipeline, script: "echo Slurm job ID: ${slurmJobID}")
Utils.exec(pipeline, script: "echo Sleeping to allow agent initialization; sleep 30")
}
}
stage('Checking if the Node is Online') {
withCredentials([usernamePassword(credentialsId: 'svc_tensorrt', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD')]) {
def remote = [
ip : cluster.ip,
host : cluster.host,
user : "${pipeline.USERNAME}",
passwd : "${pipeline.PASSWORD}",
allowAnyHosts: true,
]
def counter = 0
// We submit the Slurm job with 5 hours timeout, and the K8S pod will be evicted after 22 hours.
// Let's use 15 hours to check if the node is online, and with 2 hours buffer.
while (!CloudManager.isNodeOnline(nodeName) && counter < 90) {
// Wait 10 minutes to check status of the node again
sleep(time: 10, unit: 'MINUTES')
// Avoid the node being stuck in the held state.
Utils.exec(pipeline, script: Utils.sshUserCmd(remote, "\"scontrol release ${slurmJobID} || true\""), numRetries: 3)
counter++
}
}
if (CloudManager.isNodeOnline(nodeName)) {
def dockerGPUOption = ""
node(nodeName) {
sh """
env | sort
pwd && ls -alh
ls -alh ${env.WORKSPACE}
ls -alh ${env.WORKSPACE_TMP}
"""
sh "nproc && free -g && hostname"
echoNodeAndGpuInfo(pipeline, stageName)
sh "nvidia-smi && nvidia-smi -q && nvidia-smi topo -m"
// Use single quotes to avoid Jenkins variable expansion
sh 'echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES"'
sh 'echo "NV_GPU: $NV_GPU"'
// Dynamically set GPU arguments based on environment variables
// https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html
// It's intentional to check NV_GPU first.
dockerGPUOption = sh(script: """
if [ -n "\$NV_GPU" ]; then
echo "--gpus '\\"device=\$NV_GPU\\"'"
elif [ -n "\$CUDA_VISIBLE_DEVICES" ]; then
echo "--gpus '\\"device=\$CUDA_VISIBLE_DEVICES\\"'"
else
echo "--gpus ${gpuCount}"
fi
""", returnStdout: true).trim()
}
def dockerArgs = "${dockerGPUOption} " +
"--cap-add=SYS_ADMIN " +
"--ipc=host " +
"--security-opt seccomp=unconfined " +
"-u root:root " +
"-v /home/scratch.trt_llm_data:/scratch.trt_llm_data:ro " +
"-v /tmp/ccache:${CCACHE_DIR}:rw " +
"-v /tmp/pipcache/http-v2:/root/.cache/pip/http-v2:rw " +
"--cap-add=SYSLOG"
echo "Final dockerArgs: ${dockerArgs}"
if (partition.clusterName == "dlcluster") {
dockerArgs += " -e NVIDIA_IMEX_CHANNELS=0"
}
slurmRunner = runInDockerOnNodeMultiStage(LLM_DOCKER_IMAGE, nodeName, dockerArgs, true)
executeLLMTestOnSlurm(pipeline, platform, testList, config, perfMode, stageName, splitId, splits, skipInstallWheel, cpver, slurmRunner)
} else {
error "The Slurm node does not come online in the waiting period. Terminating the job."
}
}
} finally {
stage("Clean up SLURM Resources") {
// Workaround to handle the interruption during clean up SLURM resources
retry(3) {
try {
cleanUpNodeResources(pipeline, cluster, nodeName, slurmJobID)
} catch (Exception e) {
error "Error during clean up SLURM resources: ${e.getMessage()} and retrying."
}
}
}
}
}
def getNodeArgs(int nodeCount, int gpuCount) {
int gpusPerNode = ((gpuCount / nodeCount) as BigDecimal).setScale(0, BigDecimal.ROUND_CEILING).intValue()
return [
"--nodes=${nodeCount}",
"--ntasks=${gpuCount}",
"--ntasks-per-node=${gpusPerNode}",
"--gpus-per-node=${gpusPerNode}",
].join(" ")
}
def runLLMTestlistOnSlurm_MultiNodes(pipeline, platform, testList, config=VANILLA_CONFIG, perfMode=false, stageName="Undefined", splitId=1, splits=1, gpuCount=1, nodeCount=2, skipInstallWheel=false, cpver="cp312")
{
SlurmPartition partition = SlurmConfig.partitionConfig[platform] as SlurmPartition
SlurmCluster cluster = SlurmConfig.clusterConfig[partition.clusterName]
// Create a unique suffix for the job name
String customSuffix = "${env.BUILD_TAG}-${UUID.randomUUID().toString().replaceAll("-", "").substring(0, 6)}".toLowerCase()
def jobUID = "${cluster.host}-multi_node_test-${customSuffix}"
Utils.exec(pipeline, script: "env | sort && pwd && ls -alh")
def slurmOutputFile = null
try {
// Run ssh command to start node in desired cluster via SLURM
withCredentials([
usernamePassword(
credentialsId: 'svc_tensorrt',
usernameVariable: 'USERNAME',
passwordVariable: 'PASSWORD'
)
]) {
def remote = [
ip : cluster.ip,
host : cluster.host,
user : "${pipeline.USERNAME}",
passwd : "${pipeline.PASSWORD}",
allowAnyHosts: true,
]
Utils.exec(pipeline, script: "apt-get update && apt-get install -y sshpass openssh-client")
def tarName = BUILD_CONFIGS[config][TARNAME]
def llmTarfile = "https://urm.nvidia.com/artifactory/${ARTIFACT_PATH}/${tarName}"
def llmPath = sh (script: "realpath .", returnStdout: true).trim()
def jobWorkspace = "/home/svc_tensorrt/bloom/scripts/${jobUID}"
def resourcePathNode = "/tmp"
def llmSrcNode = "${resourcePathNode}/TensorRT-LLM/src"
def llmSrcLocal = "${llmPath}/TensorRT-LLM/src"
def scriptRunNode = "${jobWorkspace}/${jobUID}-slurm_run.sh"
def scriptLaunch = "${jobWorkspace}/${jobUID}-slurm_launch.sh"
slurmOutputFile = SlurmConfig.getOutputFilePath("/home/svc_tensorrt/slurm-logs", jobUID)
def testListPathNode = "${jobWorkspace}/${testList}.txt"
def waivesListPathNode = "${jobWorkspace}/waives.txt"
def isAarch64 = config.contains("aarch64")
def pytestTestTimeout = "7200"
stage('Prepare Testing') {
// Create Job Workspace folder in Frontend Node
Utils.exec(pipeline, script: Utils.sshUserCmd(remote, "\"mkdir -p ${jobWorkspace}\""), numRetries: 3)
// Download and Unzip Tar File
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && wget -nv ${llmTarfile}")
sh "cd ${llmPath} && tar -zxf ${BUILD_CONFIGS[config][TARNAME]}"
// Upload slurm_run_sh to Frontend node
def scriptRunLocalPath = "${llmSrcLocal}/jenkins/scripts/slurm_run.sh"
Utils.exec(pipeline, script: "chmod +x ${scriptRunLocalPath}", returnStdout: true)
Utils.exec(pipeline, script: "sshpass -p '${remote.passwd}' scp -r -p ${COMMON_SSH_OPTIONS} ${scriptRunLocalPath} ${remote.user}@${remote.host}:${scriptRunNode}", numRetries: 3)
Utils.exec(pipeline, script: "cat ${scriptRunLocalPath}")
// Upload waives.txt to Frontend node
def waivesListLocalPath = "${llmSrcLocal}/tests/integration/test_lists/waives.txt"
Utils.exec(pipeline, script: "sshpass -p '${remote.passwd}' scp -r -p ${COMMON_SSH_OPTIONS} ${waivesListLocalPath} ${remote.user}@${remote.host}:${waivesListPathNode}", numRetries: 3)
// Generate Test List and Upload to Frontend Node
def makoArgs = getMakoArgsFromStageName(stageName, true)
// TODO: currently the options will only be processed if the first
// line is "Mako options:", maybe we can make it more generic, which
// if the line cannot be split by "=", just ignore that line.
def makoOptsJson = transformMakoArgsToJson(["Mako options:"] + makoArgs)
def testListPath = renderTestDB(testList, llmSrcLocal, stageName, makoOptsJson)
Utils.exec(pipeline, script: "sshpass -p '${remote.passwd}' scp -r -p ${COMMON_SSH_OPTIONS} ${testListPath} ${remote.user}@${remote.host}:${testListPathNode}", numRetries: 3)
// Generate Multi Node Job Launch Script
def container = LLM_DOCKER_IMAGE.replace("urm.nvidia.com/", "urm.nvidia.com#")
def mounts = "/home/scratch.trt_llm_data:/scratch.trt_llm_data:ro,/home/svc_tensorrt/bloom/scripts:/home/svc_tensorrt/bloom/scripts"
String taskArgs = getNodeArgs(nodeCount, gpuCount)
if (taskArgs == null) {
error "Invalid multinode task stage name is set"
}
taskArgs = [
taskArgs,
"--exclusive",
"--container-image=${container}",
"--container-workdir=/home/svc_tensorrt/bloom/scripts",
"--container-mounts=${mounts}",
"--container-env=NVIDIA_IMEX_CHANNELS"
].join(" ")
def srunCmd = SlurmConfig.generateMultiNodeCommand(partition, taskArgs, scriptRunNode)
def scriptLaunchDestPath = Utils.createTempLocation(pipeline, "./slurm_launch.sh")
def scriptContent = """#!/bin/bash
set -o pipefail
export jobWorkspace=$jobWorkspace
export tarName=$tarName
export llmTarfile=$llmTarfile
export llmSrcNode=$llmSrcNode
export stageName=$stageName
export testList=$testList
export testListPathNode=$testListPathNode
export waivesListPathNode=$waivesListPathNode
export pytestTestTimeout=$pytestTestTimeout
export splits=$splits
export splitId=$splitId
export perfMode=$perfMode
export resourcePathNode=$resourcePathNode
export MODEL_CACHE_DIR=$MODEL_CACHE_DIR
export NVIDIA_IMEX_CHANNELS=0
chmod +x ${scriptRunNode}
${srunCmd} 2>&1 | tee ${slurmOutputFile}
""".stripIndent()
pipeline.writeFile(file: scriptLaunchDestPath, text: scriptContent)
Utils.exec(pipeline, script: "chmod +x ${scriptLaunchDestPath}", returnStdout: true)
Utils.exec(pipeline, script: "sshpass -p '${remote.passwd}' scp -r -p ${COMMON_SSH_OPTIONS} ${scriptLaunchDestPath} ${remote.user}@${remote.host}:${scriptLaunch}", numRetries: 3)
Utils.exec(pipeline, script: "cat ${scriptLaunchDestPath}")
}
stage('Run Test') {
Utils.exec(
pipeline,
timeout: false,
script: Utils.sshUserCmd(
remote,
"\"bash ${scriptLaunch}\""
),
numRetries: 3
)
}
echo "Finished test stage execution."
}
} finally {
uploadResults(pipeline, cluster, jobUID, stageName)
stage("Clean up SLURM Resources") {
// Workaround to handle the interruption during clean up SLURM resources
retry(3) {
try {
cleanUpNodeResourcesMultiNodes(pipeline, cluster, jobUID, slurmOutputFile)
} catch (Exception e) {
error "Error during clean up SLURM resources: ${e.getMessage()} and retrying."
}
}
}
}
}
def trimForStageList(stageNameList)
{
if (stageNameList == null) {
return null
}
trimedList = []
stageNameList.each { stageName ->
trimedList.add(stageName.trim().replaceAll('\\\\', ''))
}
return trimedList
}
// Test filter flags
@Field
def REUSE_STAGE_LIST = "reuse_stage_list"
@Field
def ENABLE_SKIP_TEST = "skip_test"
@Field
def TEST_STAGE_LIST = "stage_list"
@Field
def GPU_TYPE_LIST = "gpu_type"
@Field
def TEST_BACKEND = "test_backend"
@Field
def IS_POST_MERGE = "post_merge"
@Field
def ADD_MULTI_GPU_TEST = "add_multi_gpu_test"
@Field
def ONLY_MULTI_GPU_TEST = "only_multi_gpu_test"
@Field
def DISABLE_MULTI_GPU_TEST = "disable_multi_gpu_test"
@Field
def EXTRA_STAGE_LIST = "extra_stage"
@Field
def MULTI_GPU_FILE_CHANGED = "multi_gpu_file_changed"
@Field
def ONLY_ONE_GROUP_CHANGED = "only_one_group_changed"
@Field
def AUTO_TRIGGER_TAG_LIST = "auto_trigger_tag_list"
@Field
def DEBUG_MODE = "debug"
@Field
def DETAILED_LOG = "detailed_log"
@Field
def testFilter = [
(REUSE_STAGE_LIST): null,
(ENABLE_SKIP_TEST): false,
(TEST_STAGE_LIST): null,
(GPU_TYPE_LIST): null,
(TEST_BACKEND): null,
(IS_POST_MERGE): false,
(ADD_MULTI_GPU_TEST): false,
(ONLY_MULTI_GPU_TEST): false,
(DISABLE_MULTI_GPU_TEST): false,
(EXTRA_STAGE_LIST): null,
(MULTI_GPU_FILE_CHANGED): false,
(ONLY_ONE_GROUP_CHANGED): "",
(DEBUG_MODE): false,
(AUTO_TRIGGER_TAG_LIST): [],
(DETAILED_LOG): false,
]
@Field
def GITHUB_PR_API_URL = "github_pr_api_url"
@Field
def CACHED_CHANGED_FILE_LIST = "cached_changed_file_list"
@Field
def ACTION_INFO = "action_info"
@Field
def IMAGE_KEY_TO_TAG = "image_key_to_tag"
def globalVars = [
(GITHUB_PR_API_URL): null,
(CACHED_CHANGED_FILE_LIST): null,
(ACTION_INFO): null,
(IMAGE_KEY_TO_TAG): [:],
]
String getShortenedJobName(String path)
{
static final nameMapping = [
"L0_MergeRequest": "l0-mr",
"L0_Custom": "l0-cus",
"L0_PostMerge": "l0-pm",
"L0_PostMergeDocker": "l0-pmd",
"L1_Custom": "l1-cus",
"L1_Nightly": "l1-nt",
"L1_Stable": "l1-stb",
"BuildDockerImageSanityTest": "img-check",
]
def parts = path.split('/')
// Apply nameMapping to the last part (jobName)
def jobName = parts[-1]
boolean replaced = false
nameMapping.each { key, value ->
if (jobName.contains(key)) {
jobName = jobName.replace(key, value)
replaced = true
}
}
if (!replaced) {
jobName = jobName.length() > 7 ? jobName.substring(0, 7) : jobName
}
// Replace the last part with the transformed jobName
parts[-1] = jobName
// Rejoin the parts with '-', convert to lowercase
return parts.join('-').toLowerCase()
}
def cacheErrorAndUploadResult(stageName, taskRunner, finallyRunner, noResultIfSuccess=false)
{
checkStageName([stageName])
def Boolean stageIsInterrupted = false
def Boolean stageIsFailed = true
try {
taskRunner()
stageIsFailed = false
} catch (InterruptedException e) {
stageIsInterrupted = true
throw e
} finally {
if (stageIsInterrupted) {
echo "Stage is interrupted, skip to upload test result."
} else {
sh 'if [ "$(id -u)" -eq 0 ]; then dmesg || true; fi'
if (noResultIfSuccess && !stageIsFailed) {
// Clean up the workspace
sh """
env | sort
pwd && ls -alh
rm -rf ./*
"""
echo "Finished test stage execution."
return
}
echo "noResultIfSuccess: ${noResultIfSuccess}, stageIsFailed: ${stageIsFailed}"
sh "mkdir -p ${stageName}"
finallyRunner()
if (stageIsFailed) {
def stageXml = generateStageFailTestResultXml(stageName, "Stage Failed", "Stage run failed without result", "results*.xml")
if (stageXml != null) {
sh "echo '${stageXml}' > ${stageName}/results-stage.xml"
}
}
sh "STAGE_NAME=${stageName}"
sh "STAGE_NAME=${stageName} && env | sort > ${stageName}/debug_env.txt"
echo "Upload test results."
sh "tar -czvf results-${stageName}.tar.gz ${stageName}/"
trtllm_utils.uploadArtifacts(
"results-${stageName}.tar.gz",
"${UPLOAD_PATH}/test-results/"
)
junit(testResults: "${stageName}/results*.xml")
}
// Clean up the workspace
sh """
env | sort
pwd && ls -alh
rm -rf ./*
"""
echo "Finished test stage execution."
}
}
def createKubernetesPodConfig(image, type, arch = "amd64", gpuCount = 1, perfMode = false)
{
def targetCould = "kubernetes-cpu"
def selectors = """
nvidia.com/node_type: builder
kubernetes.io/arch: ${arch}
kubernetes.io/os: linux"""
def containerConfig = ""
def nodeLabelPrefix = ""
def jobName = getShortenedJobName(env.JOB_NAME)
def buildID = env.BUILD_ID
def archSuffix = arch == "arm64" ? "arm" : "amd"
def jnlpImage = "urm.nvidia.com/sw-ipp-blossom-sre-docker-local/lambda/custom_jnlp_images_${archSuffix}_linux:jdk17"
switch(type)
{
case "agent":
containerConfig = """
- name: alpine
image: urm.nvidia.com/docker/alpine:latest
command: ['cat']
tty: true
resources:
requests:
cpu: '2'
memory: 10Gi
ephemeral-storage: 25Gi
limits:
cpu: '2'
memory: 10Gi
ephemeral-storage: 25Gi
imagePullPolicy: Always"""
nodeLabelPrefix = "cpu"
break
case "slurm":
containerConfig = """
- name: trt-llm
image: ${image}
command: ['sleep', ${POD_TIMEOUT_SECONDS_SLURM}]
tty: true
resources:
requests:
cpu: ${SLURM_CORES_REQUEST}
memory: ${SLURM_MEMORY_REQUEST}
ephemeral-storage: 100Gi
limits:
cpu: ${SLURM_CORES_LIMIT}
memory: ${SLURM_MEMORY_LIMIT}
ephemeral-storage: 100Gi
imagePullPolicy: Always"""
nodeLabelPrefix = "cpu"
break
case "build":
containerConfig = """
- name: trt-llm
image: ${image}
command: ['sleep', ${POD_TIMEOUT_SECONDS_BUILD}]
volumeMounts:
- name: sw-tensorrt-pvc
mountPath: "/mnt/sw-tensorrt-pvc"
readOnly: false
tty: true
resources:
requests:
cpu: ${BUILD_CORES_REQUEST}
memory: ${BUILD_MEMORY_REQUEST}
ephemeral-storage: 200Gi
limits:
cpu: ${BUILD_CORES_LIMIT}
memory: ${BUILD_MEMORY_LIMIT}
ephemeral-storage: 200Gi
imagePullPolicy: Always"""
nodeLabelPrefix = "cpu"
break
default:
def hasMultipleGPUs = (gpuCount > 1)
def memorySize = "${TESTER_MEMORY}"
def storageSize = "300Gi"
def driverVersion = Constants.DEFAULT_NVIDIA_DRIVER_VERSION
def cpuCount = "${TESTER_CORES}"
if (hasMultipleGPUs)
{
// Not a hard requirement, but based on empirical values.
memorySize = "${gpuCount * 150}" + "Gi"
storageSize = "${gpuCount * 150}" + "Gi"
cpuCount = "${gpuCount * 12}"
}
def gpuType = KubernetesManager.selectGPU(type)
nodeLabelPrefix = type
targetCould = "kubernetes"
// The following GPU types doesn't support dynamic driver flashing.
if (type.contains("dgx-h100") || type.contains("dgx-h200") || type.contains("rtx-pro-6000") || type in ["b100-ts2", "gh200", "rtx-5080", "rtx-5090"]) {
selectors = """
kubernetes.io/arch: ${arch}
kubernetes.io/os: linux
nvidia.com/gpu_type: ${gpuType}"""
} else if (perfMode && !hasMultipleGPUs) {
// Not using the "perf" node currently due to hardware resource constraint.
// Use single GPU machine with "tensorrt/test_type: perf" for stable perf testing.
// H100 / A100 single GPU machine has this unique label in TensorRT Blossom pool.
selectors = """
kubernetes.io/arch: ${arch}
kubernetes.io/os: linux
nvidia.com/gpu_type: ${gpuType}
nvidia.com/driver_version: '${driverVersion}'"""
}
else
{
selectors = """
kubernetes.io/arch: ${arch}
kubernetes.io/os: linux
nvidia.com/gpu_type: ${gpuType}
nvidia.com/driver_version: '${driverVersion}'"""
}
containerConfig = """
- name: trt-llm
image: ${image}
command: ['sleep', ${POD_TIMEOUT_SECONDS_TEST}]
tty: true
resources:
requests:
cpu: ${cpuCount}
memory: ${memorySize}
nvidia.com/gpu: ${gpuCount}
ephemeral-storage: ${storageSize}
limits:
cpu: ${cpuCount}
memory: ${memorySize}
nvidia.com/gpu: ${gpuCount}
ephemeral-storage: ${storageSize}
imagePullPolicy: Always
volumeMounts:
- name: dshm
mountPath: /dev/shm
- name: scratch-trt-llm-data
mountPath: /scratch.trt_llm_data
readOnly: true
- name: sw-tensorrt-pvc
mountPath: "/mnt/sw-tensorrt-pvc"
readOnly: false
securityContext:
capabilities:
add:
- SYS_ADMIN"""
break
}
def nodeLabel = trtllm_utils.appendRandomPostfix("${nodeLabelPrefix}---tensorrt-${jobName}-${buildID}")
def pvcVolume = """
- name: sw-tensorrt-pvc
persistentVolumeClaim:
claimName: sw-tensorrt-pvc
"""
if (arch == "arm64") {
// PVC mount isn't supported on aarch64 platform. Use NFS as a WAR.
pvcVolume = """
- name: sw-tensorrt-pvc
nfs:
server: 10.117.145.13
path: /vol/scratch1/scratch.svc_tensorrt_blossom
"""
}
def podConfig = [
cloud: targetCould,
namespace: "sw-tensorrt",
label: nodeLabel,
yaml: """
apiVersion: v1
kind: Pod
spec:
qosClass: Guaranteed
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: "tensorrt/taints"
operator: DoesNotExist
- key: "tensorrt/affinity"
operator: NotIn
values:
- "core"
nodeSelector: ${selectors}
containers:
${containerConfig}
env:
- name: HOST_NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: jnlp
image: ${jnlpImage}
args: ['\$(JENKINS_SECRET)', '\$(JENKINS_NAME)']
resources:
requests:
cpu: '2'
memory: 10Gi
ephemeral-storage: 25Gi
limits:
cpu: '2'
memory: 10Gi
ephemeral-storage: 25Gi
qosClass: Guaranteed
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: scratch-trt-llm-data
nfs:
server: 10.117.145.14
path: /vol/scratch1/scratch.michaeln_blossom
${pvcVolume}
""".stripIndent(),
]
return podConfig
}
def echoNodeAndGpuInfo(pipeline, stageName)
{
String hostNodeName = sh(script: '''
if [ -n "$HOST_NODE_NAME" ]; then
echo "$HOST_NODE_NAME"
else
hostname -f || hostname
fi
''', returnStdout: true).trim()
String gpuUuids = pipeline.sh(script: "nvidia-smi -q | grep \"GPU UUID\" | awk '{print \$4}' | tr '\n' ',' || true", returnStdout: true)
pipeline.echo "HOST_NODE_NAME = ${hostNodeName} ; GPU_UUIDS = ${gpuUuids} ; STAGE_NAME = ${stageName}"
}
def runLLMDocBuild(pipeline, config)
{
// Step 1: cloning source code
sh "pwd && ls -alh"
sh "env | sort"
// allow to checkout from forked repo, svc_tensorrt needs to have access to the repo, otherwise clone will fail
trtllm_utils.checkoutSource(LLM_REPO, env.gitlabCommit, LLM_ROOT, true, true)
sh "mkdir TensorRT-LLM"
sh "cp -r ${LLM_ROOT}/ TensorRT-LLM/src/"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "git config --global --add safe.directory \"*\"")
def llmPath = sh (script: "realpath .", returnStdout: true).trim()
def llmSrc = "${llmPath}/TensorRT-LLM/src"
// Step 2: download TRT-LLM tarfile
def llmTarfile = "https://urm.nvidia.com/artifactory/${ARTIFACT_PATH}/${BUILD_CONFIGS[config][TARNAME]}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && wget -nv ${llmTarfile}")
sh "cd ${llmPath} && tar -zxf ${BUILD_CONFIGS[config][TARNAME]}"
// install python package
if (env.alternativeTRT) {
sh "cd ${llmSrc} && sed -i 's#tensorrt~=.*\$#tensorrt#g' requirements.txt && cat requirements.txt"
}
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmSrc} && pip3 install --retries 1 -r requirements-dev.txt")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && pip3 install --force-reinstall --no-deps TensorRT-LLM/tensorrt_llm-*.whl")
// Step 3: build doc
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get update")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get install doxygen python3-pip graphviz -y")
def containerPATH = sh(script: "echo \${PATH}", returnStdout: true).replaceAll("\\s", "")
if (!containerPATH.contains("/usr/local/bin:")) {
echo "Prepend /usr/local/bin into \${PATH}"
containerPATH = "/usr/local/bin:${containerPATH}"
}
containerPATH = containerPATH.replaceAll(':+$', '')
withEnv(["PATH=${containerPATH}"]) {
sh "env | sort"
sh "rm -rf ${LLM_ROOT}/docs/build"
trtllm_utils.llmExecStepWithRetry(
pipeline,
script: """
cd ${LLM_ROOT}/docs && \
pip3 install -r requirements.txt && \
pip3 install git+https://github.com/sphinx-doc/sphinx.git@v7.4.7 && \
doxygen Doxygen && \
make html && \
cd build/html && \
touch .nojekyll
"""
)
}
echo "Upload built html."
sh "tar -czvf doc-html-preview.tar.gz ${LLM_ROOT}/docs/build/html"
trtllm_utils.uploadArtifacts(
"doc-html-preview.tar.gz",
"${UPLOAD_PATH}/test-results/"
)
}
def launchTestListCheck(pipeline)
{
stageName = "Test List Check"
trtllm_utils.launchKubernetesPod(pipeline, createKubernetesPodConfig(LLM_DOCKER_IMAGE, "a10"), "trt-llm", {
try {
echoNodeAndGpuInfo(pipeline, stageName)
trtllm_utils.llmExecStepWithRetry(pipeline, script: """apt-get update && apt-get install \
libffi-dev \
-y""")
sh "nvidia-smi && nvidia-smi -q && nvidia-smi topo -m"
// download TRT-LLM tarfile
def tarName = BUILD_CONFIGS[VANILLA_CONFIG][TARNAME]
def llmTarfile = "https://urm.nvidia.com/artifactory/${ARTIFACT_PATH}/${tarName}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "pwd && wget -nv ${llmTarfile} && ls -alh")
sh "tar -zxf ${tarName}"
def llmPath = sh (script: "realpath .", returnStdout: true).trim()
def llmSrc = "${llmPath}/TensorRT-LLM/src"
sh "NVIDIA_TRITON_SERVER_VERSION=25.04 LLM_ROOT=${llmSrc} LLM_BACKEND_ROOT=${llmSrc}/triton_backend python3 ${llmSrc}/scripts/check_test_list.py --l0 --qa --waive"
} catch (InterruptedException e) {
throw e
} catch (Exception e) {
throw e
}
})
}
def generateStageFailTestResultXml(stageName, subName, failureLog, resultPath) {
String resultFiles = sh(script: "cd ${stageName} && ls -l ${resultPath} | wc -l", returnStdout: true).trim()
echo "${resultFiles}"
if (resultFiles != "0") {
return null
}
return """<?xml version="1.0" encoding="UTF-8"?><testsuites>
<testsuite name="${stageName}" errors="0" failures="1" skipped="0" tests="1" time="1.00">
<testcase name="${subName}" classname="${stageName}" time="1.0">
<failure message="${failureLog}"> ${failureLog}
</failure></testcase></testsuite></testsuites>"""
}
def transformMakoArgsToJson(optList) {
def makoOpts = [:]
def startedMakoOpts = false
def param = null
def value = null
optList.each { val ->
if (startedMakoOpts) {
// Handle case where value is missing
param = null
value = null
try {
(param, value) = val.split("=")
} catch (ArrayIndexOutOfBoundsException ex) {
param = val.split("=")[0]
value = null
}
// Try to convert nulls, booleans, and floats into the correct type
if (value != null) {
if (value.toLowerCase() == "none") {
echo "Converted mako param '${param}' value '${value}' to 'null'"
value = null
} else if (value.toLowerCase() in ["true", "false"]) {
echo "Converted mako param '${param}' value '${value}' to Boolean '${value.toBoolean()}'"
value = value.toBoolean()
}
}
makoOpts[(param)] = value
}
if (val.equals("Mako options:")) {
startedMakoOpts = true
}
}
def makoOptsJson = JsonOutput.toJson(makoOpts)
// Print and return the Test DB Query as a JSON string
echo "Test DB Mako opts: ${makoOptsJson}"
return makoOptsJson
}
def getMakoOpts(getMakoScript, makoArgs=[]) {
// We want to save a map for the Mako opts
def turtleOutput = ""
// Echo the command
// NOTE: We redirect stderr to stdout so that we can capture
// both stderr and stdout streams with the 'returnStdout' flag
// in sh command.
def listMakoCmd = [
"python3",
getMakoScript,
"--device 0"].join(" ")
if (makoArgs) {
def makoOptArgs = makoArgs.collect { "--mako-opt " + it }
listMakoCmd += " " + makoOptArgs.join(" ")
}
// Add the withCredentials step to access gpu-chip-mapping file
withCredentials([file(credentialsId: 'gpu-chip-mapping', variable: 'GPU_CHIP_MAPPING')]) {
listMakoCmd = [listMakoCmd, "--chip-mapping-file ${GPU_CHIP_MAPPING}"].join(" ")
listMakoCmd = [listMakoCmd, "2>&1"].join(" ")
echo "Scripts to get Mako list, cmd: ${listMakoCmd}"
// Capture the mako output, add timeout in case any hang
timeout(time: 30, unit: 'MINUTES'){
turtleOutput = sh(label: "Capture Mako Parameters", script: listMakoCmd, returnStdout: true)
}
}
// Validate output
assert turtleOutput: "Mako opts not found - could not construct test db test list."
// Split each line of turtle output into a list
def turtleOutList = turtleOutput.split("\n")
def makoOptsJson = transformMakoArgsToJson(turtleOutList)
return makoOptsJson
}
def parseMultiNodeTaskConfigFromStageName(String stageName) {
def taskConfig = null
def matcher = (stageName =~ /([^-]+)-(\d+)_GPUs-(\d+)_Nodes/)
if (matcher.find()) {
taskConfig = [
gpu: "${matcher.group(1)}",
system_gpu_count: "${matcher.group(2)}",
node_count: "${matcher.group(3)}" // "node_count" might not be used currently
]
}
return taskConfig
}
def getMakoArgsFromStageName(stageName, parseSysinfo=false) {
def makoArgs = []
def isPostMerge = stageName.contains("Post-Merge")
makoArgs += [isPostMerge ? "stage=post_merge" : "stage=pre_merge"]
// Determine the backend type based on keywords in stageName
if (stageName.contains("-PyTorch-")) {
// If stageName contains "-PyTorch-", add "backend=pytorch" to makoArgs
// At this point, only tests with backend=pytorch or unspecified backend will be run
makoArgs += ["backend=pytorch"]
} else if (stageName.contains("-TensorRT-")) {
// If stageName contains "-TensorRT-", add "backend=tensorrt" to makoArgs
// At this point, only tests with backend=tensorrt or unspecified backend will be run
makoArgs += ["backend=tensorrt"]
} else if (stageName.contains("-CPP-")) {
// If stageName contains "-CPP-", add "backend=cpp" to makoArgs
// At this point, only tests with backend=cpp or unspecified backend will be run
makoArgs += ["backend=cpp"]
} else if (stageName.contains("-Triton-")) {
// If stageName contains "-Triton-", add "backend=triton" to makoArgs
// At this point, only tests with backend=triton or unspecified backend will be run
makoArgs += ["backend=triton"]
} else {
// If stageName does not contain "-PyTorch-", "-TensorRT-", "-CPP-", or "-Triton-", do not add any backend
// At this point, all tests will be run
// For cases where backend is not specified in makoArgs, we will match all types of backends and tests without specified backend
}
if (stageName.contains("-DeepSeek-")) {
makoArgs += ["auto_trigger=deepseek"]
} else {
makoArgs += ["auto_trigger=others"]
}
if (parseSysinfo) {
def taskConfig = parseMultiNodeTaskConfigFromStageName(stageName)
if (taskConfig) {
makoArgs += [
"gpu=${taskConfig.gpu}",
"system_gpu_count=${taskConfig.system_gpu_count}"
]
}
}
return makoArgs
}
def renderTestDB(testContext, llmSrc, stageName, preDefinedMakoOpts=null) {
def makoOpts = preDefinedMakoOpts
if (!makoOpts) {
def scriptPath = "${llmSrc}/tests/integration/defs/sysinfo/get_sysinfo.py"
def makoArgs = getMakoArgsFromStageName(stageName)
makoOpts = getMakoOpts(scriptPath, makoArgs)
}
sh "pip3 install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --ignore-installed trt-test-db==1.8.5+bc6df7"
def testDBPath = "${llmSrc}/tests/integration/test_lists/test-db"
def testList = "${llmSrc}/${testContext}.txt"
def testDBQueryCmd = [
"trt-test-db",
"-d",
testDBPath,
"--context",
testContext,
"--test-names",
"--output",
testList,
"--match",
"'${makoOpts}'"
].join(" ")
sh(label: "Render test list from test-db", script: testDBQueryCmd)
sh(script: "cat ${testList}")
return testList
}
def getSSHConnectionPorts(portConfigFile, stageName)
{
def type = stageName.split('-')[0]
echo "The type is: ${type}"
def fileContent = sh(script: "cat ${portConfigFile}", returnStdout: true).trim()
// Get available VM port list from portConfigFile based on stage name (e.g. A10: [10022, 10023])
def portList = []
fileContent.split('\n').each { line ->
def matcher = (line =~ /(.+?)=\[(.+?)\]/)
if (matcher) {
def key = matcher[0][1].replaceAll("\\s","")
def values = matcher[0][2].replaceAll("\\s","").split(',').collect { it.replaceAll("\\s","") }
if (key == type) {
portList.addAll(values)
}
}
}
echo "Port List for ${type}: ${portList}"
// Get current port usage status
def portUsage = ""
withCredentials([
usernamePassword(credentialsId: 'tensorrt_llm_infra_debug_vm_01_credentials', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD'),
string(credentialsId: 'DEBUG_HOST_NAME', variable: 'HOST_NAME')
]) {
portUsage = sh(script: "ssh -v ${USERNAME}@${HOST_NAME} ${COMMON_SSH_OPTIONS} 'netstat -tuln'", returnStdout: true)
}
echo "Port Usage: ${portUsage}"
// Get an available VM port
def userPort = 0
while (portList.size() > 0) {
def randomIndex = (int)(Math.random() * portList.size())
def curPort = portList[randomIndex].toInteger()
if (!portUsage.contains(":${curPort}")) {
userPort = curPort
break
}
portList.remove(randomIndex)
}
if (userPort == 0) {
echo "There is no available port for ${type}"
return [0, 0]
}
echo "The chosen port is: ${userPort}"
// Calculate autossh monitor port by subtracting 9000 from VM port (e.g. 10022 -> 1022)
// If monitor port is already in use, randomly assign a value between 2000-3000
def monitorPort = userPort - 9000
while (portUsage.contains(":${monitorPort}")) {
monitorPort = 2000 + (int)(Math.random() * 1000)
}
echo "The monitor port is: ${monitorPort}"
return [userPort, monitorPort]
}
def rerunFailedTests(stageName, llmSrc, testCmdLine) {
if (!fileExists("${WORKSPACE}/${stageName}/results.xml")) {
error "There is not results.xml file, skip the rerun step"
}
// Generate rerun test lists
def failSignaturesList = trtllm_utils.getFailSignaturesList().join(",")
sh """
python3 ${llmSrc}/jenkins/scripts/test_rerun.py \
generate_rerun_tests_list \
--output-dir=${WORKSPACE}/${stageName}/ \
--input-file=${WORKSPACE}/${stageName}/results.xml \
--fail-signatures='${failSignaturesList}'
"""
// If there are some failed tests that cannot be rerun (e.g. test duration > 10 min and no known failure signatures),
// fail the stage immediately without attempting any reruns
rerunTestList = "${WORKSPACE}/${stageName}/rerun_0.txt"
if (fileExists(rerunTestList)) {
sh "cat ${rerunTestList}"
error "There are some failed tests that cannot be rerun, skip the rerun step."
}
// If the stage has more than 5 failed tests, skip the rerun step
def validLineCount = 0
for (times in [1, 2]) {
rerunTestList = "${WORKSPACE}/${stageName}/rerun_${times}.txt"
if (fileExists(rerunTestList)) {
count = sh(
script: "grep -v '^[[:space:]]*\$' ${rerunTestList} | wc -l",
returnStdout: true
).trim().toInteger()
echo "Found ${count} tests to rerun ${times} time(s)"
validLineCount += count
}
}
if (validLineCount > 5) {
error "There are more than 5 failed tests, skip the rerun step."
} else if (validLineCount == 0) {
error "No failed tests need to be rerun, skip the rerun step."
}
// Rerun tests
isRerunFailed = false
for (times in [1, 2]) {
rerunTestList = "${WORKSPACE}/${stageName}/rerun_${times}.txt"
if (!fileExists(rerunTestList)) {
echo "No failed tests need to be rerun ${times} time(s)"
continue
}
sh "cat ${rerunTestList}"
xmlFile = "${WORKSPACE}/${stageName}/rerun_results_${times}.xml"
// change the testCmdLine for rerun
noNeedLine = ["--splitting-algorithm", "--splits", "--group", "--waives-file", "--cov"]
needToChangeLine = ["--test-list", "--csv", "--junit-xml"]
testCmdLine = testCmdLine.findAll { cmd ->
!noNeedLine.any { line -> cmd.contains(line) } && !needToChangeLine.any { line -> cmd.contains(line) }
}
testCmdLine += [
"--test-list=${rerunTestList}",
"--csv=${WORKSPACE}/${stageName}/rerun_report_${times}.csv",
"--junit-xml ${xmlFile}",
"--reruns ${times - 1}"
]
try {
sh """
cd ${llmSrc}/tests/integration/defs && \
${testCmdLine.join(" ")}
"""
} catch(InterruptedException e) {
throw e
} catch (Exception e) {
if (!fileExists(xmlFile)) {
echo "The tests crashed when rerun attempt."
throw e
}
echo "The tests still failed after rerun attempt."
isRerunFailed = true
}
}
// Specify the stage name correctly
sh "cd ${WORKSPACE}/${stageName} && sed -i 's/testsuite name=\"pytest\"/testsuite name=\"${stageName}\"/g' *.xml || true"
// Generate rerun report
inputFiles = ["${WORKSPACE}/${stageName}/results.xml",
"${WORKSPACE}/${stageName}/rerun_results_1.xml",
"${WORKSPACE}/${stageName}/rerun_results_2.xml"]
sh """
python3 ${llmSrc}/jenkins/scripts/test_rerun.py \
generate_rerun_report \
--output-file=${WORKSPACE}/${stageName}/rerun_results.xml \
--input-files=${inputFiles.join(",")}
"""
// Update original results xml file with rerun results xml files for junit
sh """
python3 ${llmSrc}/jenkins/scripts/test_rerun.py \
merge_junit_xmls \
--output-file=${WORKSPACE}/${stageName}/results.xml \
--input-files=${inputFiles.join(",")} \
--deduplicate
"""
trtllm_utils.uploadArtifacts(
"${WORKSPACE}/${stageName}/rerun_results.html",
"${UPLOAD_PATH}/rerun_reports/${stageName}_rerun_results.html"
)
echo "Test rerun report: https://urm.nvidia.com/artifactory/${UPLOAD_PATH}/rerun_reports/${stageName}_rerun_results.html"
echo "isRerunFailed: ${isRerunFailed}"
return isRerunFailed
}
def runLLMTestlistOnPlatformImpl(pipeline, platform, testList, config=VANILLA_CONFIG, perfMode=false, stageName="Undefined", splitId=1, splits=1, skipInstallWheel=false, cpver="cp312")
{
// Step 1: create LLM_ROOT dir and clean up the workspace
def llmRootConfig = "${LLM_ROOT}${config}"
sh """
env | sort
pwd && ls -alh
rm -rf ./*
mkdir ${llmRootConfig}
ls -alh ${env.WORKSPACE}
ls -alh ${env.WORKSPACE_TMP}
"""
def llmPath = sh (script: "realpath ${llmRootConfig}", returnStdout: true).trim()
def llmSrc = "${llmPath}/TensorRT-LLM/src"
echoNodeAndGpuInfo(pipeline, stageName)
if (env.alternativeTRT && cpver) {
stage("Replace TensorRT") {
trtllm_utils.replaceWithAlternativeTRT(env.alternativeTRT, cpver)
}
}
// Step 2: run tests
stage ("Setup environment")
{
// Random sleep to avoid resource contention
sleep(10 * Math.random())
sh "curl ifconfig.me || true"
sh "nproc && free -g && hostname"
echoNodeAndGpuInfo(pipeline, stageName)
sh "cat ${MODEL_CACHE_DIR}/README"
sh "nvidia-smi && nvidia-smi -q && nvidia-smi topo -m"
sh "df -h"
// setup HF_HOME to cache model and datasets
// init the huggingface cache from nfs, since the nfs is read-only, and HF_HOME needs to be writable, otherwise it will fail at creating file lock
sh "mkdir -p ${HF_HOME} && ls -alh ${HF_HOME}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get update")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get install -y rsync")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "rsync -r ${MODEL_CACHE_DIR}/hugging-face-cache/ ${HF_HOME}/ && ls -lh ${HF_HOME}")
sh "df -h"
// install package
sh "env | sort"
sh "which python3"
sh "python3 --version"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get install -y libffi-dev")
sh "rm -rf results-${stageName}.tar.gz ${stageName}/*"
// download TRT-LLM tarfile
def tarName = BUILD_CONFIGS[config][TARNAME]
def llmTarfile = "https://urm.nvidia.com/artifactory/${ARTIFACT_PATH}/${tarName}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && wget -nv ${llmTarfile}")
sh "cd ${llmPath} && tar -zxf ${tarName}"
// Download the new merged waives.txt
def waivesTxt = "https://urm.nvidia.com/artifactory/${ARTIFACT_PATH}/waive_list/waives.txt"
try {
trtllm_utils.llmExecStepWithRetry(pipeline, script: "wget -nv ${waivesTxt}")
if (!fileExists("waives.txt")) {
error "There is no merged waives.txt file, use the default waives.txt."
}
sh "rm ${llmSrc}/tests/integration/test_lists/waives.txt"
sh "mv waives.txt ${llmSrc}/tests/integration/test_lists/waives.txt"
echo "Download merged waives.txt successfully"
} catch (InterruptedException e) {
throw e
} catch (Exception e) {
echo "Failed to download merged waives.txt, use the default waives.txt. Error: ${e.message}"
}
// install python package
if (env.alternativeTRT) {
sh "cd ${llmSrc} && sed -i 's#tensorrt~=.*\$#tensorrt#g' requirements.txt && cat requirements.txt"
}
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmSrc} && pip3 install --retries 1 -r requirements-dev.txt")
if (!skipInstallWheel) {
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && pip3 install --force-reinstall --no-deps TensorRT-LLM/tensorrt_llm-*.whl")
}
trtllm_utils.llmExecStepWithRetry(pipeline, script: "mkdir -p /opt/tritonserver/backends/tensorrtllm")
def isAarch64 = config.contains("aarch64")
if (!isAarch64) {
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && cp TensorRT-LLM/triton_backend/inflight_batcher_llm/libtriton_tensorrtllm.so /opt/tritonserver/backends/tensorrtllm/")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${llmPath} && cp TensorRT-LLM/triton_backend/inflight_batcher_llm/trtllmExecutorWorker /opt/tritonserver/backends/tensorrtllm/")
}
trtllm_utils.llmExecStepWithRetry(pipeline, script: "git config --global --add safe.directory \"*\"")
}
if (testFilter[(DEBUG_MODE)]) {
stage("Interactive debug session")
{
testFilter[(DEBUG_MODE)] = false
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get install openssh-server -y")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get install autossh -y")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get install sshpass -y")
sh """
echo 'Port 22' >> /etc/ssh/sshd_config
echo 'PermitRootLogin yes' >> /etc/ssh/sshd_config
echo 'PasswordAuthentication yes' >> /etc/ssh/sshd_config
echo 'PubkeyAuthentication yes' >> /etc/ssh/sshd_config
echo 'AllowTcpForwarding yes' >> /etc/ssh/sshd_config
echo 'GatewayPorts yes' >> /etc/ssh/sshd_config
cat /etc/ssh/sshd_config
"""
sh "service ssh restart"
sh "service ssh status"
sh "ssh-keygen -t rsa -b 2048 -f ~/.ssh/id_rsa -N '' -q"
sh """
chmod 700 ~/.ssh
chmod 400 ~/.ssh/id_rsa
touch ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys
"""
// The portConfig file is in the VM
def portConfigFilePath = "/root/.ssh/ports_config.txt"
withCredentials([
usernamePassword(credentialsId: 'tensorrt_llm_infra_debug_vm_01_credentials', usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD'),
string(credentialsId: 'DEBUG_HOST_NAME', variable: 'HOST_NAME')
]) {
sh "sshpass -p ${PASSWORD} -v ssh ${USERNAME}@${HOST_NAME} ${COMMON_SSH_OPTIONS} 'cat >> ~/.ssh/authorized_keys' < ~/.ssh/id_rsa.pub"
sh "ssh -v ${USERNAME}@${HOST_NAME} ${COMMON_SSH_OPTIONS} 'echo \"\" > ~/.ssh/known_hosts && cat ~/.ssh/id_rsa.pub' >> ~/.ssh/authorized_keys"
sh "ssh -v ${USERNAME}@${HOST_NAME} ${COMMON_SSH_OPTIONS} 'cat ~/.ssh/ports_config.txt' >> ${portConfigFilePath}"
def (int userPort, int monitorPort) = getSSHConnectionPorts(portConfigFilePath, stageName)
if (userPort == 0) {
echo "Fail to setup an interactive debug session and exit the debug mode."
testFilter[(DEBUG_MODE)] = false
return
}
sh "ssh -f ${COMMON_SSH_OPTIONS} -L 1111:127.0.0.1:${monitorPort} -R ${monitorPort}:127.0.0.1:1112 -NR ${userPort}:localhost:22 ${USERNAME}@${HOST_NAME}"
sh "autossh -fNR ${userPort}:localhost:22 ${USERNAME}@${HOST_NAME}"
sh "ps aux | grep ssh"
try {
timeout(time: 2, unit: 'HOURS') {
input message: "Pause 2 hours for Pre-Debug. Please type 'ssh root@${HOST_NAME} -p ${userPort}' on the CLI to create the connection. Please press the button to proceed when you finish debugging."
}
} catch (InterruptedException e) {
echo "Pre-debug session was interrupted by user or timeout"
currentBuild.result = 'ABORTED'
error("Pipeline aborted during pre-debug session")
} catch (Exception e) {
echo "An error occurred during pre-debug session: ${e.message}"
currentBuild.result = 'FAILURE'
error("Error in pre-debug session: ${e.message}")
}
}
testFilter[(DEBUG_MODE)] = true
}
}
stage ("[${stageName}] Run Pytest")
{
echoNodeAndGpuInfo(pipeline, stageName)
sh 'if [ "$(id -u)" -eq 0 ]; then dmesg -C || true; fi'
def extraInternalEnv = ""
def pytestTestTimeout = "3600"
// TRT uses half of the host logic cores for engine building which is bad for multi-GPU machines.
extraInternalEnv = "__LUNOWUD=\"-thread_pool_size=${TESTER_CORES}\""
// CPP test execution is timing out easily, so we always override its internal timeout to the same value as pytest
extraInternalEnv += " CPP_TEST_TIMEOUT_OVERRIDDEN=${pytestTestTimeout}"
def testDBList = renderTestDB(testList, llmSrc, stageName)
testList = "${testList}_${splitId}"
def testCmdLine = [
"LLM_ROOT=${llmSrc}",
"LLM_BACKEND_ROOT=${llmSrc}/triton_backend",
"LLM_MODELS_ROOT=${MODEL_CACHE_DIR}",
"MODEL_CACHE_DIR=${MODEL_CACHE_DIR}",
extraInternalEnv,
"pytest",
"-v",
testFilter[(DETAILED_LOG)] ? "-s" : "",
"--timeout-method=thread",
"--apply-test-list-correction",
"--splitting-algorithm least_duration",
"--timeout=${pytestTestTimeout}",
"--rootdir ${llmSrc}/tests/integration/defs",
"--test-prefix=${stageName}",
"--splits ${splits}",
"--group ${splitId}",
"--waives-file=${llmSrc}/tests/integration/test_lists/waives.txt",
"--test-list=${testDBList}",
"--output-dir=${WORKSPACE}/${stageName}/",
"--csv=${WORKSPACE}/${stageName}/report.csv",
"--junit-xml ${WORKSPACE}/${stageName}/results.xml",
"-o junit_logging=out-err"
]
if (perfMode) {
testCmdLine += [
"--perf",
"--perf-log-formats csv",
"--perf-log-formats yaml"
]
}
// Test Coverage
def TRTLLM_WHL_PATH = sh(returnStdout: true, script: "pip3 show tensorrt_llm | grep Location | cut -d ' ' -f 2").replaceAll("\\s","")
sh "echo ${TRTLLM_WHL_PATH}"
def coverageConfigFile = "${llmSrc}/${stageName}/.coveragerc"
sh "mkdir -p ${llmSrc}/${stageName} && touch ${coverageConfigFile}"
sh """
echo '[run]' > ${coverageConfigFile}
echo 'branch = True' >> ${coverageConfigFile}
echo 'data_file = ${WORKSPACE}/${stageName}/.coverage.${stageName}' >> ${coverageConfigFile}
echo '[paths]' >> ${coverageConfigFile}
echo 'source =\n ${llmSrc}/tensorrt_llm/\n ${TRTLLM_WHL_PATH}/tensorrt_llm/' >> ${coverageConfigFile}
cat ${coverageConfigFile}
"""
testCmdLine += [
"--cov=${llmSrc}/examples/",
"--cov=${llmSrc}/tensorrt_llm/",
"--cov=${TRTLLM_WHL_PATH}/tensorrt_llm/",
"--cov-report=",
"--cov-config=${coverageConfigFile}"
]
def containerPIP_LLM_LIB_PATH = sh(script: "pip3 show tensorrt_llm | grep \"Location\" | awk -F\":\" '{ gsub(/ /, \"\", \$2); print \$2\"/tensorrt_llm/libs\"}'", returnStdout: true).replaceAll("\\s","")
def containerLD_LIBRARY_PATH = sh(script: "echo \${LD_LIBRARY_PATH}", returnStdout: true).replaceAll("\\s","")
if (!containerLD_LIBRARY_PATH.contains("${containerPIP_LLM_LIB_PATH}:")) {
echo "Prepend ${containerPIP_LLM_LIB_PATH} into \${LD_LIBRARY_PATH}"
containerLD_LIBRARY_PATH = "${containerPIP_LLM_LIB_PATH}:${containerLD_LIBRARY_PATH}"
}
containerLD_LIBRARY_PATH = containerLD_LIBRARY_PATH.replaceAll(':+$', '')
withEnv(["LD_LIBRARY_PATH=${containerLD_LIBRARY_PATH}"]) {
withCredentials([
usernamePassword(
credentialsId: 'svc_tensorrt_gitlab_read_api_token',
usernameVariable: 'GITLAB_API_USER',
passwordVariable: 'GITLAB_API_TOKEN'
),
string(credentialsId: 'llm_evaltool_repo_url', variable: 'EVALTOOL_REPO_URL')
]) {
sh "env | sort"
try {
sh """
rm -rf ${stageName}/ && \
cd ${llmSrc}/tests/integration/defs && \
${testCmdLine.join(" ")}
"""
} catch (InterruptedException e) {
throw e
} catch (Exception e) {
isRerunFailed = rerunFailedTests(stageName, llmSrc, testCmdLine)
if (isRerunFailed) {
error "The tests still failed after rerun attempt."
}
}
}
}
if (perfMode) {
basePerfFilename = stageName.contains("PyTorch") ? "base_perf_pytorch.csv" : "base_perf.csv"
basePerfPath = "${llmSrc}/tests/integration/defs/perf/${basePerfFilename}"
stage("Check perf result") {
sh """
python3 ${llmSrc}/tests/integration/defs/perf/sanity_perf_check.py \
${stageName}/perf_script_test_results.csv \
${basePerfPath}
"""
}
stage("Create perf report") {
sh """
python3 ${llmSrc}/tests/integration/defs/perf/create_perf_comparison_report.py \
--output_path ${stageName}/report.pdf \
--files ${stageName}/perf_script_test_results.csv \
${basePerfPath}
"""
}
}
}
}
def runLLMTestlistOnPlatform(pipeline, platform, testList, config=VANILLA_CONFIG, perfMode=false, stageName="Undefined", splitId=1, splits=1, skipInstallWheel=false, cpver="cp312")
{
cacheErrorAndUploadResult(stageName, {
runLLMTestlistOnPlatformImpl(pipeline, platform, testList, config, perfMode, stageName, splitId, splits, skipInstallWheel, cpver)
}, {
if (testFilter[(DEBUG_MODE)]) {
try {
timeout(time: 2, unit: 'HOURS') {
input message: "Pause 2 hours for Post-Debug. Please press the button to proceed when you finish debugging."
}
} catch (InterruptedException e) {
echo "Post-debug session was interrupted by user or timeout"
currentBuild.result = 'ABORTED'
error("Pipeline aborted during post-debug session")
} catch (Exception e) {
echo "An error occurred during post-debug session: ${e.message}"
currentBuild.result = 'FAILURE'
error("Error in post-debug session: ${e.message}")
}
}
// If the execution test list is null, remove the test result xml
sh """
ls -all ${stageName}/
if ! grep -q '<testcase' ${stageName}/results.xml; then
rm ${stageName}/results.xml || true
fi
"""
def llmPath = sh (script: "realpath .", returnStdout: true).trim()
def llmSrc = "${llmPath}/${LLM_ROOT}${config}/TensorRT-LLM/src"
// CPP tests will generate test result in ${llmSrc}/cpp/build_backup/, move these files to job result folder
sh "ls -all ${llmSrc}/cpp/build_backup/ || true"
sh "ls -all ${llmSrc}/cpp/build/ || true"
// Sed for CPP test result
sh "cd ${llmSrc}/cpp/build_backup/ && sed -i 's/\" classname=\"/\" classname=\"${stageName}./g' *.xml || true"
sh "cd ${llmSrc}/cpp/build_backup/ && sed -i 's/testsuite name=\"[^\"]*\"/testsuite name=\"${stageName}\"/g' *.xml || true"
// Sed for Pytest result
sh "cd ${stageName} && sed -i 's/testsuite name=\"pytest\"/testsuite name=\"${stageName}\"/g' *.xml || true"
// Copy CPP test result
sh "cp ${llmSrc}/cpp/build_backup/*.xml ${stageName} || true"
sh "ls ${stageName}/ -all"
})
}
def checkPipInstall(pipeline, wheel_path)
{
def wheelArtifactLinks = "https://urm.nvidia.com/artifactory/${UPLOAD_PATH}/${wheel_path}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "cd ${LLM_ROOT}/tests/unittest && python3 test_pip_install.py --wheel_path ${wheelArtifactLinks}")
}
def runLLMBuild(pipeline, cpu_arch, reinstall_dependencies=false, wheel_path="", cpver="cp312")
{
sh "pwd && ls -alh"
sh "env | sort"
sh "ccache -sv"
trtllm_utils.checkoutSource(LLM_REPO, env.gitlabCommit, "tensorrt_llm", true, true)
if (env.alternativeTRT) {
sh "cd ${LLM_ROOT} && sed -i 's#tensorrt~=.*\$#tensorrt#g' requirements.txt && cat requirements.txt"
}
// Random sleep to avoid resource contention
sleep(10 * Math.random())
sh "curl ifconfig.me || true"
sh "nproc && free -g && hostname"
sh "cat ${CCACHE_DIR}/ccache.conf"
sh "bash -c 'pip3 show tensorrt || true'"
if (reinstall_dependencies == true) {
sh "#!/bin/bash \n" + "pip3 uninstall -y torch"
sh "#!/bin/bash \n" + "yum remove -y libcudnn*"
}
trtllm_utils.llmExecStepWithRetry(pipeline, script: "#!/bin/bash \n" + "cd tensorrt_llm/ && pip3 install -r requirements-dev.txt")
if (env.alternativeTRT) {
trtllm_utils.replaceWithAlternativeTRT(env.alternativeTRT, cpver)
}
buildArgs = "--clean"
if (cpu_arch == AARCH64_TRIPLE) {
buildArgs += " -a '90-real;100-real;120-real'"
}
withCredentials([usernamePassword(credentialsId: "urm-artifactory-creds", usernameVariable: 'CONAN_LOGIN_USERNAME', passwordVariable: 'CONAN_PASSWORD')]) {
trtllm_utils.llmExecStepWithRetry(pipeline, script: "#!/bin/bash \n" + "cd tensorrt_llm/ && python3 scripts/build_wheel.py --use_ccache -G Ninja -j ${BUILD_JOBS} -D 'WARNING_IS_ERROR=ON' ${buildArgs}")
}
if (env.alternativeTRT) {
sh "bash -c 'pip3 show tensorrt || true'"
}
def wheelName = sh(returnStdout: true, script: 'cd tensorrt_llm/build && ls -1 *.whl').trim()
echo "uploading ${wheelName} to ${cpu_arch}/${wheel_path}"
trtllm_utils.uploadArtifacts("tensorrt_llm/build/${wheelName}", "${UPLOAD_PATH}/${cpu_arch}/${wheel_path}")
if (reinstall_dependencies == true) {
// Test installation in the new environment
def pip_keep = "-e 'pip'"
def remove_trt = "rm -rf /usr/local/tensorrt"
if (env.alternativeTRT) {
pip_keep += " -e tensorrt"
remove_trt = "echo keep /usr/local/tensorrt"
}
sh "#!/bin/bash \n" + "pip3 list --format=freeze | egrep -v ${pip_keep} | xargs pip3 uninstall -y"
sh "#!/bin/bash \n" + "yum remove -y libcudnn* libnccl* libcublas* && ${remove_trt}"
}
// Test preview installation
trtllm_utils.llmExecStepWithRetry(pipeline, script: "#!/bin/bash \n" + "cd tensorrt_llm/ && pip3 install pytest build/tensorrt_llm-*.whl")
if (env.alternativeTRT) {
sh "bash -c 'pip3 show tensorrt || true'"
}
return wheelName
}
def runPackageSanityCheck(pipeline, wheel_path, reinstall_dependencies=false, cpver="cp312")
{
def whlUrl = "https://urm.nvidia.com/artifactory/${UPLOAD_PATH}/${wheel_path}"
// Random sleep to avoid resource contention
sleep(10 * Math.random())
sh "curl ifconfig.me || true"
sh "nproc && free -g && hostname"
sh "bash -c 'pip3 show tensorrt || true'"
sh "cat ${MODEL_CACHE_DIR}/README"
sh "nvidia-smi && nvidia-smi -q && nvidia-smi topo -m"
sh "pwd && ls -alh"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "wget -nv ${whlUrl}")
if (env.alternativeTRT) {
trtllm_utils.replaceWithAlternativeTRT(env.alternativeTRT, cpver)
sh "bash -c 'pip3 show tensorrt || true'"
}
if (reinstall_dependencies) {
// Test installation in the new environment
def pip_keep = "-e 'pip'"
def remove_trt = "rm -rf /usr/local/tensorrt"
if (env.alternativeTRT) {
pip_keep += " -e tensorrt"
remove_trt = "echo keep /usr/local/tensorrt"
}
sh "bash -c 'pip3 list --format=freeze | egrep -v ${pip_keep} | xargs pip3 uninstall -y'"
sh "bash -c 'yum remove -y libcudnn* libnccl* libcublas* && ${remove_trt}'"
}
// Test preview installation
trtllm_utils.llmExecStepWithRetry(pipeline, script: "bash -c 'pip3 install pytest tensorrt_llm-*.whl'")
if (env.alternativeTRT) {
sh "bash -c 'pip3 show tensorrt || true'"
}
def pkgUrl = "https://urm.nvidia.com/artifactory/${ARTIFACT_PATH}/${linuxPkgName}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "wget -nv ${pkgUrl}")
sh "tar -zvxf ${linuxPkgName}"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "bash -c 'cd tensorrt_llm/examples/models/core/gpt && python3 ../../../generate_checkpoint_config.py --architecture GPTForCausalLM --dtype float16'")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "bash -c 'cd tensorrt_llm/examples/models/core//gpt && trtllm-build --model_config config.json --log_level verbose'")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "bash -c 'cd tensorrt_llm/examples/models/core/gpt && python3 ../../../run.py --max_output_len 4 --end_id -1'")
}
def checkStageNameSet(stageNames, jobKeys, paramName) {
echo "Validate stage names for the passed GitLab bot params [${paramName}]."
invalidStageName = stageNames.findAll { !(it in jobKeys) }
if (invalidStageName) {
def sortedJobKeys = jobKeys.sort()
throw new Exception("Cannot find the stage names [${invalidStageName}] from the passed params [${paramName}]. Available stage names (${sortedJobKeys.size()} total):\n${sortedJobKeys.collect { " ${it}" }.join('\n')}")
}
}
def checkStageName(stageNames) {
invalidStageName = stageNames.findAll { !(it ==~ /[-\+\w\[\]]+/) }
if (invalidStageName) {
throw new Exception("Invalid stage name: [${invalidStageName}], we only support chars '-+_[]0-9a-zA-Z' .")
}
}
def runInDockerOnNodeMultiStage(image, label, dockerArgs, needToDeleteDir=true)
{
return {
runner -> node(label) {
try {
if (needToDeleteDir) {
deleteDir()
}
stage('Pull Docker Image') {
docker.image(image).pull()
}
docker.image(image).inside(dockerArgs) {
runner()
}
} catch (Exception e) {
if (e.getMessage()?.contains("Failed to kill container")) {
echo "Known benign error ignored: ${e.getMessage()}"
} else {
throw e // Re-throw if it's a different IOException
}
}
}
}
}
def runInKubernetes(pipeline, podSpec, containerName)
{
return {
stageName, runner -> stage(stageName) {
trtllm_utils.launchKubernetesPod(pipeline, podSpec, containerName) {
echoNodeAndGpuInfo(pipeline, stageName)
runner()
}
}
}
}
def launchTestJobs(pipeline, testFilter)
{
// IMPORTANT: Stage Configuration Syntax Requirement
//
// The test_to_stage_mapping.py script expects stage definitions in the following format:
// "Stage-Name": ["platform", "yaml_file", split_id, split_count, gpu_count]
//
// Where:
// - Stage-Name: Must be quoted string, used to identify the Jenkins stage
// - platform: Hardware platform identifier (e.g., "a10", "h100-cr")
// - yaml_file: Test database YAML filename without .yml extension (e.g., "l0_a10")
// - split_id: Current split number (1-based)
// - split_count: Total number of splits
// - gpu_count: Number of GPUs required (optional, defaults to 1)
//
// This format is parsed by scripts/test_to_stage_mapping.py to provide bidirectional
// mapping between test names and Jenkins stage names. Any changes to this syntax
// may break the mapping functionality.
x86TestConfigs = [
"DGX_H100-4_GPUs-PyTorch-DeepSeek-1": ["dgx-h100-x4", "l0_dgx_h100", 1, 2, 4],
"DGX_H100-4_GPUs-PyTorch-DeepSeek-2": ["dgx-h100-x4", "l0_dgx_h100", 2, 2, 4],
"DGX_H100-4_GPUs-PyTorch-Others-1": ["dgx-h100-x4", "l0_dgx_h100", 1, 1, 4],
"DGX_H100-4_GPUs-CPP-1": ["dgx-h100-x4", "l0_dgx_h100", 1, 1, 4],
"A10-PyTorch-1": ["a10", "l0_a10", 1, 1],
"A10-CPP-1": ["a10", "l0_a10", 1, 1],
"A10-TensorRT-1": ["a10", "l0_a10", 1, 6],
"A10-TensorRT-2": ["a10", "l0_a10", 2, 6],
"A10-TensorRT-3": ["a10", "l0_a10", 3, 6],
"A10-TensorRT-4": ["a10", "l0_a10", 4, 6],
"A10-TensorRT-5": ["a10", "l0_a10", 5, 6],
"A10-TensorRT-6": ["a10", "l0_a10", 6, 6],
"A10-Pybind": ["a10", "l0_a10_pybind", 1, 1],
"A30-Triton-1": ["a30", "l0_a30", 1, 1],
"A30-PyTorch-1": ["a30", "l0_a30", 1, 2],
"A30-PyTorch-2": ["a30", "l0_a30", 2, 2],
"A30-CPP-1": ["a30", "l0_a30", 1, 3],
"A30-CPP-2": ["a30", "l0_a30", 2, 3],
"A30-CPP-3": ["a30", "l0_a30", 3, 3],
"A100X-PyTorch-1": ["a100x", "l0_a100", 1, 1],
"L40S-PyTorch-1": ["l40s", "l0_l40s", 1, 2],
"L40S-PyTorch-2": ["l40s", "l0_l40s", 2, 2],
"H100_PCIe-PyTorch-1": ["h100-cr", "l0_h100", 1, 3],
"H100_PCIe-PyTorch-2": ["h100-cr", "l0_h100", 2, 3],
"H100_PCIe-PyTorch-3": ["h100-cr", "l0_h100", 3, 3],
"H100_PCIe-CPP-1": ["h100-cr", "l0_h100", 1, 2],
"H100_PCIe-CPP-2": ["h100-cr", "l0_h100", 2, 2],
"H100_PCIe-TensorRT-1": ["h100-cr", "l0_h100", 1, 2],
"H100_PCIe-TensorRT-2": ["h100-cr", "l0_h100", 2, 2],
"B200_PCIe-PyTorch-1": ["b100-ts2", "l0_b200", 1, 2],
"B200_PCIe-PyTorch-2": ["b100-ts2", "l0_b200", 2, 2],
"RTX5090-PyTorch-1": ["rtx-5090", "l0_gb202", 1, 1],
"RTX5080-TensorRT-1": ["rtx-5080", "l0_gb203", 1, 2],
"RTX5080-TensorRT-2": ["rtx-5080", "l0_gb203", 2, 2],
// Currently post-merge test stages only run tests with "stage: post_merge" mako
// in the test-db. This behavior may change in the future.
"A10-PyTorch-Post-Merge-1": ["a10", "l0_a10", 1, 1],
"A10-TensorRT-Post-Merge-1": ["a10", "l0_a10", 1, 2],
"A10-TensorRT-Post-Merge-2": ["a10", "l0_a10", 2, 2],
"A30-TensorRT-Post-Merge-1": ["a30", "l0_a30", 1, 6],
"A30-TensorRT-Post-Merge-2": ["a30", "l0_a30", 2, 6],
"A30-TensorRT-Post-Merge-3": ["a30", "l0_a30", 3, 6],
"A30-TensorRT-Post-Merge-4": ["a30", "l0_a30", 4, 6],
"A30-TensorRT-Post-Merge-5": ["a30", "l0_a30", 5, 6],
"A30-TensorRT-Post-Merge-6": ["a30", "l0_a30", 6, 6],
"A30-CPP-Post-Merge-1": ["a30", "l0_a30", 1, 1],
"A30-Triton-Post-Merge-1": ["a30", "l0_a30", 1, 2],
"A30-Triton-Post-Merge-2": ["a30", "l0_a30", 2, 2],
"A100X-TensorRT-Post-Merge-1": ["a100x", "l0_a100", 1, 6],
"A100X-TensorRT-Post-Merge-2": ["a100x", "l0_a100", 2, 6],
"A100X-TensorRT-Post-Merge-3": ["a100x", "l0_a100", 3, 6],
"A100X-TensorRT-Post-Merge-4": ["a100x", "l0_a100", 4, 6],
"A100X-TensorRT-Post-Merge-5": ["a100x", "l0_a100", 5, 6],
"A100X-TensorRT-Post-Merge-6": ["a100x", "l0_a100", 6, 6],
"A100X-Triton-Post-Merge-1": ["a100x", "l0_a100", 1, 2],
"A100X-Triton-Post-Merge-2": ["a100x", "l0_a100", 2, 2],
"L40S-TensorRT-Post-Merge-1": ["l40s", "l0_l40s", 1, 5],
"L40S-TensorRT-Post-Merge-2": ["l40s", "l0_l40s", 2, 5],
"L40S-TensorRT-Post-Merge-3": ["l40s", "l0_l40s", 3, 5],
"L40S-TensorRT-Post-Merge-4": ["l40s", "l0_l40s", 4, 5],
"L40S-TensorRT-Post-Merge-5": ["l40s", "l0_l40s", 5, 5],
"H100_PCIe-PyTorch-Post-Merge-1": ["h100-cr", "l0_h100", 1, 1],
"H100_PCIe-CPP-Post-Merge-1": ["h100-cr", "l0_h100", 1, 1],
"H100_PCIe-TensorRT-Post-Merge-1": ["h100-cr", "l0_h100", 1, 5],
"H100_PCIe-TensorRT-Post-Merge-2": ["h100-cr", "l0_h100", 2, 5],
"H100_PCIe-TensorRT-Post-Merge-3": ["h100-cr", "l0_h100", 3, 5],
"H100_PCIe-TensorRT-Post-Merge-4": ["h100-cr", "l0_h100", 4, 5],
"H100_PCIe-TensorRT-Post-Merge-5": ["h100-cr", "l0_h100", 5, 5],
"B200_PCIe-Triton-Post-Merge-1": ["b100-ts2", "l0_b200", 1, 1],
"B200_PCIe-PyTorch-Post-Merge-1": ["b100-ts2", "l0_b200", 1, 1],
"B200_PCIe-TensorRT-Post-Merge-1": ["b100-ts2", "l0_b200", 1, 2],
"B200_PCIe-TensorRT-Post-Merge-2": ["b100-ts2", "l0_b200", 2, 2],
"H100_PCIe-TensorRT-Perf-1": ["h100-cr", "l0_perf", 1, 1],
"H100_PCIe-PyTorch-Perf-1": ["h100-cr", "l0_perf", 1, 1],
"DGX_H200-4_GPUs-Triton-Post-Merge-1": ["dgx-h200-x4", "l0_dgx_h200", 1, 1, 4],
"DGX_H200-8_GPUs-PyTorch-Post-Merge-1": ["dgx-h200-x8", "l0_dgx_h200", 1, 1, 8],
"DGX_H200-4_GPUs-PyTorch-Post-Merge-1": ["dgx-h200-x4", "l0_dgx_h200", 1, 1, 4],
"DGX_H200-4_GPUs-TensorRT-Post-Merge-1": ["dgx-h200-x4", "l0_dgx_h200", 1, 3, 4],
"DGX_H200-4_GPUs-TensorRT-Post-Merge-2": ["dgx-h200-x4", "l0_dgx_h200", 2, 3, 4],
"DGX_H200-4_GPUs-TensorRT-Post-Merge-3": ["dgx-h200-x4", "l0_dgx_h200", 3, 3, 4],
"RTXPro6000-Pytorch-Post-Merge-1": ["rtx-pro-6000", "l0_rtx_pro_6000", 1, 1],
// https://github.com/NVIDIA/TensorRT-LLM/commit/4658b778ef122d637bfa91a300e2d164ecdd15d0
// NCCL 2.25.1 doesn't support RTX Pro 6000 multi-GPU config
// "RTXPro6000-4_GPUs-Pytorch-Post-Merge-1": ["rtx-pro-6000-x4", "l0_rtx_pro_6000", 1, 2, 4],
// "RTXPro6000-4_GPUs-Pytorch-Post-Merge-2": ["rtx-pro-6000-x4", "l0_rtx_pro_6000", 2, 2, 4],
]
parallelJobs = x86TestConfigs.collectEntries{key, values -> [key, [createKubernetesPodConfig(LLM_DOCKER_IMAGE, values[0], "amd64", values[4] ?: 1, key.contains("Perf")), {
def config = VANILLA_CONFIG
if (key.contains("single-device")) {
config = SINGLE_DEVICE_CONFIG
}
if (key.contains("llvm")) {
config = LLVM_CONFIG
}
if (key.contains("Pybind")) {
config = PYBIND_CONFIG
}
runLLMTestlistOnPlatform(pipeline, values[0], values[1], config, key.contains("Perf"), key, values[2], values[3])
}]]}
fullSet = parallelJobs.keySet()
x86SlurmTestConfigs = [
"DGX_B200-4_GPUs-PyTorch-1": ["b200-x4", "l0_dgx_b200", 1, 2, 4],
"DGX_B200-4_GPUs-PyTorch-2": ["b200-x4", "l0_dgx_b200", 2, 2, 4],
"DGX_B200-8_GPUs-PyTorch-1": ["b200-x8", "l0_dgx_b200", 1, 1, 8],
"DGX_B200-4_GPUs-PyTorch-Post-Merge-1": ["b200-x4", "l0_dgx_b200", 1, 1, 4],
]
fullSet += x86SlurmTestConfigs.keySet()
parallelSlurmJobs = x86SlurmTestConfigs.collectEntries{key, values -> [key, [createKubernetesPodConfig(LLM_DOCKER_IMAGE, "slurm", "amd64"), {
def config = VANILLA_CONFIG
if (key.contains("single-device")) {
config = SINGLE_DEVICE_CONFIG
}
if (key.contains("llvm")) {
config = LLVM_CONFIG
}
runLLMTestlistOnSlurm(pipeline, values[0], values[1], config, key.contains("Perf"), key, values[2], values[3], values[4] ?: 1)
}]]}
parallelJobs += parallelSlurmJobs
// Try to match what are being tested on x86 H100_PCIe.
// The total machine time is scaled proportionally according to the number of each GPU.
SBSATestConfigs = [
"GH200-TensorRT-Post-Merge-1": ["gh200", "l0_gh200", 1, 1],
]
fullSet += SBSATestConfigs.keySet()
SBSASlurmTestConfigs = [
"GB200-PyTorch-1": ["gb200-single", "l0_gb200", 1, 1],
"GB200-4_GPUs-PyTorch-1": ["gb200-x4", "l0_gb200_multi_gpus", 1, 1, 4],
"GB200-4_GPUs-PyTorch-Post-Merge-1": ["gb200-x4", "l0_gb200_multi_gpus", 1, 1, 4],
]
fullSet += SBSASlurmTestConfigs.keySet()
multiNodesSBSAConfigs = [
// Each stage test 1 testcase with 8 GPUs and 2 nodes.
"GB200-8_GPUs-2_Nodes-PyTorch-1": ["gb200-multi-node", "l0_gb200_multi_nodes", 1, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-2": ["gb200-multi-node", "l0_gb200_multi_nodes", 2, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-3": ["gb200-multi-node", "l0_gb200_multi_nodes", 3, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-4": ["gb200-multi-node", "l0_gb200_multi_nodes", 4, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-5": ["gb200-multi-node", "l0_gb200_multi_nodes", 5, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-Post-Merge-1": ["gb200-multi-node", "l0_gb200_multi_nodes", 1, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-Post-Merge-2": ["gb200-multi-node", "l0_gb200_multi_nodes", 2, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-Post-Merge-3": ["gb200-multi-node", "l0_gb200_multi_nodes", 3, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-Post-Merge-4": ["gb200-multi-node", "l0_gb200_multi_nodes", 4, 5, 8, 2],
"GB200-8_GPUs-2_Nodes-PyTorch-Post-Merge-5": ["gb200-multi-node", "l0_gb200_multi_nodes", 5, 5, 8, 2],
]
fullSet += multiNodesSBSAConfigs.keySet()
if (env.targetArch == AARCH64_TRIPLE) {
parallelJobs = SBSATestConfigs.collectEntries{key, values -> [key, [createKubernetesPodConfig(LLM_DOCKER_IMAGE, values[0], "arm64"), {
runLLMTestlistOnPlatform(pipeline, values[0], values[1], LINUX_AARCH64_CONFIG, false, key, values[2], values[3])
}]]}
// Add SBSA Slurm jobs
parallelSlurmJobs = SBSASlurmTestConfigs.collectEntries{key, values -> [key, [createKubernetesPodConfig(LLM_DOCKER_IMAGE, "slurm", "arm64"), {
def config = LINUX_AARCH64_CONFIG
if (key.contains("single-device")) {
config = SINGLE_DEVICE_CONFIG
}
if (key.contains("llvm")) {
config = LLVM_CONFIG
}
runLLMTestlistOnSlurm(pipeline, values[0], values[1], config, key.contains("Perf"), key, values[2], values[3], values[4] ?: 1)
}]]}
parallelJobs += parallelSlurmJobs
// Add SBSA multi node Slurm jobs
parallelMultiNodesSBSAJobs = multiNodesSBSAConfigs.collectEntries{key, values -> [key, [createKubernetesPodConfig(LLM_DOCKER_IMAGE, "slurm", "arm64"), {
def config = LINUX_AARCH64_CONFIG
if (key.contains("single-device")) {
config = SINGLE_DEVICE_CONFIG
}
if (key.contains("llvm")) {
config = LLVM_CONFIG
}
runLLMTestlistOnSlurm_MultiNodes(pipeline, values[0], values[1], config, key.contains("Perf"), key, values[2], values[3], values[4] ?: 1, values[5] ?: 2)
}]]}
parallelJobs += parallelMultiNodesSBSAJobs
}
docBuildSpec = createKubernetesPodConfig(LLM_DOCKER_IMAGE, "a10")
docBuildConfigs = [
"A10-Build_Docs": [docBuildSpec, {
sh "rm -rf **/*.xml *.tar.gz"
runLLMDocBuild(pipeline, config=VANILLA_CONFIG)
}],
]
fullSet += docBuildConfigs.keySet()
if (env.targetArch == AARCH64_TRIPLE) {
docBuildConfigs = [:]
}
docBuildJobs = docBuildConfigs.collectEntries{key, values -> [key, [values[0], {
stage("[${key}] Run") {
cacheErrorAndUploadResult("${key}", values[1], {}, true)
}
}]]}
// Python version and OS for sanity check
x86SanityCheckConfigs = [
"PY312-DLFW": [
LLM_ROCKYLINUX8_PY312_DOCKER_IMAGE,
"B200_PCIe",
X86_64_TRIPLE,
true,
"dlfw/",
DLFW_IMAGE,
false,
],
"PY310-UB2204": [
LLM_ROCKYLINUX8_PY310_DOCKER_IMAGE,
"A10",
X86_64_TRIPLE,
true,
"",
UBUNTU_22_04_IMAGE,
false,
],
"PY312-UB2404": [
LLM_ROCKYLINUX8_PY312_DOCKER_IMAGE,
"RTX5090",
X86_64_TRIPLE,
true,
"",
UBUNTU_24_04_IMAGE,
true, // Extra PyTorch CUDA 12.8 install
],
]
aarch64SanityCheckConfigs = [
"PY312-UB2404": [
LLM_DOCKER_IMAGE,
"GH200",
AARCH64_TRIPLE,
false,
"",
UBUNTU_24_04_IMAGE,
true, // Extra PyTorch CUDA 12.8 install
],
"PY312-DLFW": [
LLM_DOCKER_IMAGE,
"GH200",
AARCH64_TRIPLE,
false,
"dlfw/",
DLFW_IMAGE,
false,
],
]
def toStageName = { gpuType, key -> "${gpuType}-PackageSanityCheck-${key}".toString() }
fullSet += x86SanityCheckConfigs.collectEntries{ key, values -> [toStageName(values[1], key), null] }.keySet()
fullSet += aarch64SanityCheckConfigs.collectEntries{ key, values -> [toStageName(values[1], key), null] }.keySet()
sanityCheckConfigs = x86SanityCheckConfigs
if (env.targetArch == AARCH64_TRIPLE) {
sanityCheckConfigs = aarch64SanityCheckConfigs
}
sanityCheckJobs = sanityCheckConfigs.collectEntries {key, values -> [toStageName(values[1], key), {
cacheErrorAndUploadResult(toStageName(values[1], key), {
def cpu_arch = values[2]
def gpu_type = values[1].toLowerCase()
if (values[1] == "B200_PCIe") {
gpu_type = "b100-ts2"
}
if (values[1] == "RTX5090") {
gpu_type = "rtx-5090"
}
def k8s_arch = "amd64"
if (cpu_arch == AARCH64_TRIPLE) {
k8s_arch = "arm64"
}
def buildSpec = createKubernetesPodConfig(values[0], "build", k8s_arch)
def buildRunner = runInKubernetes(pipeline, buildSpec, "trt-llm")
def sanityRunner = null
def sanitySpec = createKubernetesPodConfig(values[0], gpu_type, k8s_arch)
sanityRunner = runInKubernetes(pipeline, sanitySpec, "trt-llm")
def wheelPath = "${values[4]}"
def wheelName = ""
def cpver = "cp312"
def pyver = "3.12"
if (key.contains("PY310")) {
cpver = "cp310"
pyver = "3.10"
}
buildRunner("[${toStageName(values[1], key)}] Build") {
def env = []
if (key.contains("manylinux")) {
env = ["LD_LIBRARY_PATH+=:/usr/local/cuda/compat"]
}
withEnv(env) {
wheelName = runLLMBuild(pipeline, cpu_arch, values[3], wheelPath, cpver)
}
}
def fullWheelPath = "${cpu_arch}/${wheelPath}${wheelName}"
// TODO: Re-enable the sanity check after updating GPU testers' driver version.
// sanityRunner("Sanity check") {
// runPackageSanityCheck(pipeline, fullWheelPath, values[3], cpver)
// }
def checkPipStage = false
if (cpu_arch == X86_64_TRIPLE) {
checkPipStage = true
} else if (cpu_arch == AARCH64_TRIPLE) {
checkPipStage = true
}
if (checkPipStage) {
stage("Run LLMAPI tests") {
pipInstallSanitySpec = createKubernetesPodConfig(values[5], gpu_type, k8s_arch)
trtllm_utils.launchKubernetesPod(pipeline, pipInstallSanitySpec, "trt-llm", {
echo "###### Prerequisites Start ######"
echoNodeAndGpuInfo(pipeline, toStageName(values[1], key))
// Clean up the pip constraint file from the base NGC PyTorch image.
if (values[5] == DLFW_IMAGE) {
trtllm_utils.llmExecStepWithRetry(pipeline, script: "[ -f /etc/pip/constraint.txt ] && : > /etc/pip/constraint.txt || true")
}
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get update")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get -y install python3-pip git rsync curl wget")
trtllm_utils.checkoutSource(LLM_REPO, env.gitlabCommit, LLM_ROOT, true, true)
trtllm_utils.llmExecStepWithRetry(pipeline, script: "pip3 config set global.break-system-packages true")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "pip3 install requests")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "pip3 uninstall -y tensorrt")
if (values[5] != DLFW_IMAGE) {
def ubuntu_version = key.contains("UB2404") ? "ubuntu2404" : "ubuntu2204"
def platform = cpu_arch == X86_64_TRIPLE ? "x86_64" : "sbsa"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "wget https://developer.download.nvidia.com/compute/cuda/repos/${ubuntu_version}/${platform}/cuda-keyring_1.1-1_all.deb")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "dpkg -i cuda-keyring_1.1-1_all.deb")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get update")
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get -y install cuda-toolkit-12-9")
}
// Extra PyTorch CUDA 12.8 install for SBSA platform and Blackwell GPUs bare-metal environments
if (values[6]) {
echo "###### Extra PyTorch CUDA 12.8 install Start ######"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "pip3 install torch==2.7.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128")
}
def libEnv = []
if (env.alternativeTRT) {
stage("Replace TensorRT") {
trtllm_utils.replaceWithAlternativeTRT(env.alternativeTRT, cpver)
}
libEnv += ["LD_LIBRARY_PATH+tensorrt=/usr/local/tensorrt/lib"]
libEnv += ["LD_LIBRARY_PATH+nvrtc=/usr/local/lib/python${pyver}/dist-packages/nvidia/cuda_nvrtc/lib"]
}
echo "###### Check pip install Start ######"
withEnv(libEnv) {
// Retry 2 times if timeout occurs.
sh "env | sort"
trtllm_utils.llmRetry(1, "checkPipInstall", {
timeout(time: 30, unit: 'MINUTES') {
checkPipInstall(pipeline, "${cpu_arch}/${wheelPath}")
}
})
}
echo "###### Run LLMAPI tests Start ######"
def config = VANILLA_CONFIG
if (cpu_arch == AARCH64_TRIPLE) {
config = LINUX_AARCH64_CONFIG
}
withEnv(libEnv) {
sh "env | sort"
runLLMTestlistOnPlatform(pipeline, gpu_type, "l0_sanity_check", config, false, toStageName(values[1], key), 1, 1, true, null)
}
})
}
}
}, {}, true)
}]}
multiGpuJobs = parallelJobs.findAll{(it.key.contains("4_GPUs") || it.key.contains("8_GPUs")) && !it.key.contains("Post-Merge")}
println multiGpuJobs.keySet()
multiGpuJobsPostMerge = parallelJobs.findAll{(it.key.contains("4_GPUs") || it.key.contains("8_GPUs")) && it.key.contains("Post-Merge")}
parallelJobs += docBuildJobs
parallelJobs += sanityCheckJobs
postMergeJobs = parallelJobs.findAll {it.key.contains("Post-Merge")}
// Start as a normal pre-merge job
parallelJobsFiltered = parallelJobs - multiGpuJobs - postMergeJobs
// Check if the multi GPU related file has changed or not. If changed, add multi GPU test stages.
if (testFilter[(MULTI_GPU_FILE_CHANGED)]) {
parallelJobsFiltered += multiGpuJobs
}
if (testFilter[(AUTO_TRIGGER_TAG_LIST)] != null) {
echo "AUTO_TRIGGER_TAG_LIST mode is true. Auto trigger tags: ${testFilter[(AUTO_TRIGGER_TAG_LIST)].join(', ')}."
def autoTriggerTagStages = [:]
for (tag in testFilter[(AUTO_TRIGGER_TAG_LIST)]) {
autoTriggerTagStages += parallelJobs.findAll { it.key.contains(tag) }
}
parallelJobsFiltered += autoTriggerTagStages
if (autoTriggerTagStages.size() > 0) {
echo "Auto trigger will force run stages: ${autoTriggerTagStages.keySet().join(', ')}."
}
println parallelJobsFiltered.keySet()
}
// Check --post-merge, post-merge or TRT dependency testing pipelines.
// If true, add post-merge only test stages and multi-GPU test stages.
if (env.alternativeTRT || testFilter[(IS_POST_MERGE)]) {
parallelJobsFiltered += multiGpuJobs
parallelJobsFiltered += postMergeJobs
}
// Check --skip-test, only run doc build and sanity check stages.
if (testFilter[(ENABLE_SKIP_TEST)]) {
echo "All test stages are skipped."
parallelJobsFiltered = docBuildJobs + sanityCheckJobs
}
// Check --add-multi-gpu-test, if true, add multi-GPU test stages back.
if (testFilter[(ADD_MULTI_GPU_TEST)]) {
parallelJobsFiltered += multiGpuJobs
}
// Check --only-multi-gpu-test, if true, only run multi-GPU test stages.
if (testFilter[(ONLY_MULTI_GPU_TEST)]) {
if (testFilter[(IS_POST_MERGE)]) {
parallelJobsFiltered = multiGpuJobsPostMerge
} else {
parallelJobsFiltered = multiGpuJobs
}
}
// Check --disable-multi-gpu-test, if true, remove multi-GPU test stages.
if (testFilter[(DISABLE_MULTI_GPU_TEST)]) {
parallelJobsFiltered -= multiGpuJobs
}
// Check --gpu-type, filter test stages.
if (testFilter[(GPU_TYPE_LIST)] != null) {
echo "Use GPU_TYPE_LIST for filtering. GPU types: ${testFilter[(GPU_TYPE_LIST)]}."
parallelJobsFiltered = parallelJobsFiltered.findAll {it.key.tokenize('-')[0] in testFilter[(GPU_TYPE_LIST)]}
println parallelJobsFiltered.keySet()
}
// Check --backend-mode, filter test stages.
if (testFilter[(TEST_BACKEND)] != null) {
echo "Use TEST_BACKEND for filtering. Backend mode: ${testFilter[(TEST_BACKEND)]}."
def backendMode = testFilter[(TEST_BACKEND)].collect { it.toLowerCase() }
def changeMap = [
"pytorch": "-PyTorch-",
"tensorrt": "-TensorRT-",
"cpp": "-CPP-",
]
def backendModeList = backendMode.collect { changeMap.get(it) }.flatten()
def parallelJobsNoBackend = parallelJobsFiltered.findAll { key, _ ->
!changeMap.values().any { backend -> key.contains(backend) }
}
def parallelJobsBackendMode = parallelJobsFiltered.findAll { key, _ ->
backendModeList.any { backend -> key.contains(backend) }
}
parallelJobsFiltered = parallelJobsNoBackend + parallelJobsBackendMode
echo "parallelJobsBackendMode: ${parallelJobsBackendMode.keySet()}"
println parallelJobsFiltered.keySet()
}
if (testFilter[(ONLY_ONE_GROUP_CHANGED)] == "Docs") {
echo "Only docs files are changed, run doc build stage only."
parallelJobsFiltered = docBuildJobs
println parallelJobsFiltered.keySet()
} else if (testFilter[(ONLY_ONE_GROUP_CHANGED)] != "") {
if (testFilter[(TEST_BACKEND)] != null) {
echo "Force disable ONLY_ONE_GROUP_CHANGED mode. Backend mode set by flag: ${testFilter[(TEST_BACKEND)]}."
} else {
echo "ONLY_ONE_GROUP_CHANGED mode is true. The group is: ${testFilter[(ONLY_ONE_GROUP_CHANGED)]}."
def excludedBackends = new HashMap()
excludedBackends["PyTorch"] = ["-CPP-", "-TensorRT-", "-Triton-"]
excludedBackends["Triton"] = ["-PyTorch-", "-CPP-", "-TensorRT-"]
def group = testFilter[(ONLY_ONE_GROUP_CHANGED)]
if (excludedBackends.containsKey(group)) {
parallelJobsFiltered = parallelJobsFiltered.findAll { key, value ->
!excludedBackends[group].any { backend -> key.contains(backend) }
}
}
println parallelJobsFiltered.keySet()
}
}
// Check --stage-list, only run the stages in stage-list.
if (testFilter[TEST_STAGE_LIST] != null) {
echo "Use TEST_STAGE_LIST for filtering. Stages: ${testFilter[(TEST_STAGE_LIST)]}."
parallelJobsFiltered = parallelJobs.findAll {it.key in testFilter[(TEST_STAGE_LIST)]}
println parallelJobsFiltered.keySet()
}
// Check --extra-stage, add the stages in extra-stage.
if (testFilter[EXTRA_STAGE_LIST] != null) {
echo "Use EXTRA_STAGE_LIST for filtering. Stages: ${testFilter[(EXTRA_STAGE_LIST)]}."
parallelJobsFiltered += parallelJobs.findAll {it.key in testFilter[(EXTRA_STAGE_LIST)]}
println parallelJobsFiltered.keySet()
}
checkStageName(fullSet)
if (testFilter[(TEST_STAGE_LIST)] != null) {
checkStageNameSet(testFilter[(TEST_STAGE_LIST)], fullSet, TEST_STAGE_LIST)
}
if (testFilter[(EXTRA_STAGE_LIST)] != null) {
checkStageNameSet(testFilter[(EXTRA_STAGE_LIST)], fullSet, EXTRA_STAGE_LIST)
}
echo "Check the passed GitLab bot testFilter parameters."
def keysStr = parallelJobsFiltered.keySet().join(",\n")
pipeline.echo "Now we will run stages: [\n${keysStr}\n]"
parallelJobsFiltered = parallelJobsFiltered.collectEntries { key, values -> [key, {
stage(key) {
if (key in testFilter[REUSE_STAGE_LIST]) {
stage("Skip - reused") {
echo "Skip - Passed in the last pipeline."
}
} else if (values instanceof List) {
trtllm_utils.launchKubernetesPod(pipeline, values[0], "trt-llm", {
values[1]()
})
} else {
values()
}
}
}]}
return parallelJobsFiltered
}
def launchTestJobsForImagesSanityCheck(pipeline, globalVars) {
def testConfigs = [
"NGC Devel Image amd64": [
name: "NGC-Devel-Image-amd64-Sanity-Test",
k8sArch: "amd64",
wheelInstalled: false,
config: VANILLA_CONFIG,
],
"NGC Devel Image arm64": [
name: "NGC-Devel-Image-arm64-Sanity-Test",
k8sArch: "arm64",
wheelInstalled: false,
config: LINUX_AARCH64_CONFIG,
],
"NGC Release Image amd64": [
name: "NGC-Release-Image-amd64-Sanity-Test-A10",
gpuType: "a10",
k8sArch: "amd64",
wheelInstalled: true,
config: VANILLA_CONFIG,
],
"NGC Release Image arm64": [
name: "NGC-Release-Image-arm64-Sanity-Test-GH200",
gpuType: "gh200",
k8sArch: "arm64",
wheelInstalled: true,
config: LINUX_AARCH64_CONFIG,
],
]
if (!ENABLE_NGC_DEVEL_IMAGE_TEST) {
["NGC Devel Image amd64", "NGC Devel Image arm64"].each { key ->
testConfigs.remove(key)
}
echo "NGC Devel Image test is disabled."
}
if (!ENABLE_NGC_RELEASE_IMAGE_TEST) {
["NGC Release Image amd64", "NGC Release Image arm64"].each { key ->
testConfigs.remove(key)
}
echo "NGC Release Image test is disabled."
}
// Update testConfigs image field using the map from globalVars
testConfigs.each { key, config ->
if (globalVars[IMAGE_KEY_TO_TAG] && globalVars[IMAGE_KEY_TO_TAG][key]) {
config.image = globalVars[IMAGE_KEY_TO_TAG][key]
}
}
// Filter out all configs that don't have image set
testConfigs = testConfigs.findAll { key, config ->
return config.image != null
}
echo "Filtered test configs with images:"
println testConfigs
def testJobs = testConfigs.collectEntries { key, values -> [values.name, {
if (values.wheelInstalled) {
stage(values.name) {
echo "Run ${values.name} sanity test."
imageSanitySpec = createKubernetesPodConfig(values.image, values.gpuType, values.k8sArch)
trtllm_utils.launchKubernetesPod(pipeline, imageSanitySpec, "trt-llm", {
sh "env | sort"
trtllm_utils.llmExecStepWithRetry(pipeline, script: "apt-get update && apt-get install -y git rsync curl")
runLLMTestlistOnPlatform(pipeline, values.gpuType, "l0_sanity_check", values.config, false, values.name , 1, 1, true, null)
})
}
} else {
stage(values.name) {
imageSanitySpec = createKubernetesPodConfig(values.image, "build", values.k8sArch)
trtllm_utils.launchKubernetesPod(pipeline, imageSanitySpec, "trt-llm", {
sh "env | sort"
def cpuArch = values.k8sArch == "amd64" ? X86_64_TRIPLE : AARCH64_TRIPLE
runLLMBuild(pipeline, cpuArch, false, "imageTest/")
})
}
}
}]}
return testJobs
}
pipeline {
agent {
kubernetes createKubernetesPodConfig("", "agent")
}
options {
// Check the valid options at: https://www.jenkins.io/doc/book/pipeline/syntax/
// some step like results analysis stage, does not need to check out source code
skipDefaultCheckout()
// to better analyze the time for each step/test
timestamps()
timeout(time: 24, unit: 'HOURS')
}
environment {
//Workspace normally is: /home/jenkins/agent/workspace/LLM/L0_MergeRequest@tmp/
HF_HOME="${env.WORKSPACE_TMP}/.cache/huggingface"
CCACHE_DIR="${CCACHE_DIR}"
GITHUB_MIRROR="https://urm.nvidia.com/artifactory/github-go-remote"
PIP_INDEX_URL="https://urm.nvidia.com/artifactory/api/pypi/pypi-remote/simple"
// force datasets to be offline mode, to prevent CI jobs are downloading HF dataset causing test failures
HF_DATASETS_OFFLINE=1
}
stages {
stage("Setup environment")
{
steps
{
script {
echo "enableFailFast is: ${params.enableFailFast}"
echo "env.testFilter is: ${env.testFilter}"
testFilter = trtllm_utils.updateMapWithJson(this, testFilter, env.testFilter, "testFilter")
println testFilter
echo "env.globalVars is: ${env.globalVars}"
globalVars = trtllm_utils.updateMapWithJson(this, globalVars, env.globalVars, "globalVars")
globalVars[ACTION_INFO] = trtllm_utils.setupPipelineDescription(this, globalVars[ACTION_INFO])
}
}
}
stage("Check Test Lists")
{
when {
expression {
// Only run the test list validation when necessary
env.targetArch == X86_64_TRIPLE &&
testFilter[ONLY_ONE_GROUP_CHANGED] != "Docs" &&
!(env.JOB_NAME ==~ /.*Multi-GPU.*/) &&
!(env.JOB_NAME ==~ /.*BuildDockerImageSanityTest.*/)
}
}
steps
{
script {
launchTestListCheck(this)
}
}
}
stage("Test") {
steps {
script {
if (env.JOB_NAME ==~ /.*BuildDockerImageSanityTest.*/) {
parallelJobs = launchTestJobsForImagesSanityCheck(this, globalVars)
} else {
parallelJobs = launchTestJobs(this, testFilter)
}
singleGpuJobs = parallelJobs
dgxJobs = [:]
def testPhase2StageName = env.testPhase2StageName
if (testPhase2StageName) {
def dgxSigns = ["2_GPUs", "4_GPUs", "8_GPUs"]
singleGpuJobs = parallelJobs.findAll{!dgxSigns.any{sign -> it.key.contains(sign)}}
dgxJobs = parallelJobs.findAll{dgxSigns.any{sign -> it.key.contains(sign)}}
}
if (env.JOB_NAME ==~ /.*Single-GPU.*/) {
echo "Only run single-GPU tests."
if (dgxJobs.size() > 0) {
if (globalVars[ACTION_INFO]['parents'].size() > 0) {
// We add a special marker to the parent job's description.
// This will be used to decide whether to run multi-GPU test stage.
def parentJob = globalVars[ACTION_INFO]['parents'][-2]
def archStr = (env.targetArch == X86_64_TRIPLE) ? "x86_64" : (env.targetArch == AARCH64_TRIPLE ? "SBSA" : "Unknown")
trtllm_utils.appendBuildDescription(this, parentJob['name'], parentJob['build_number'], "====Require ${archStr} Multi-GPU Testing====<br/>")
} else {
echo "No parent job found to add the special marker for executing multi-GPU test stage."
}
} else {
echo "Skip multi-GPU testing. No test to run."
}
if (singleGpuJobs.size() > 0) {
singleGpuJobs.failFast = params.enableFailFast
parallel singleGpuJobs
} else {
echo "Skip single-GPU testing. No test to run."
}
} else if (env.JOB_NAME ==~ /.*Multi-GPU.*/) {
echo "Only run multi-GPU tests."
if (dgxJobs.size() > 0) {
dgxJobs.failFast = params.enableFailFast
parallel dgxJobs
} else {
error "Skip multi-GPU testing. No test to run."
}
} else {
if (singleGpuJobs.size() > 0) {
singleGpuJobs.failFast = params.enableFailFast
parallel singleGpuJobs
} else {
echo "Skip single-GPU testing. No test to run."
}
if (dgxJobs.size() > 0) {
stage(testPhase2StageName) {
dgxJobs.failFast = params.enableFailFast
parallel dgxJobs
}
}
}
}
}
} // Test stage
} // stages
} // pipeline