mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
342 lines
13 KiB
Python
342 lines
13 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import multiprocessing as mp
|
|
from multiprocessing import Process, Queue
|
|
from time import time
|
|
|
|
import torch
|
|
from mem_monitor import mem_monitor
|
|
|
|
|
|
def parse_arguments():
|
|
from allowed_configs import get_allowed_models
|
|
parser = argparse.ArgumentParser(
|
|
description='Benchmark TensorRT-LLM models.')
|
|
parser.add_argument('-m',
|
|
'--model',
|
|
type=str,
|
|
default="gpt_350m",
|
|
choices=get_allowed_models(),
|
|
help='Specify model you want to benchmark.')
|
|
parser.add_argument(
|
|
'--mode',
|
|
type=str,
|
|
default="plugin",
|
|
choices=['ootb', 'plugin', 'ootb-except-mha'],
|
|
help=
|
|
('Choose mode between ootb/plugin. '
|
|
'\"ootb\" means the engines will be built without any plugins, '
|
|
'\"plugin\" means the engines will be built with tuned recipe of using plugins.'
|
|
'\"ootb-except-mha\" means the engines will be built with only attention plugins.'
|
|
))
|
|
|
|
parser.add_argument('--batch_size',
|
|
type=str,
|
|
default="8",
|
|
help=('Specify batch size(s) you want to benchmark. '
|
|
'Multiple batch sizes can be separated by \";\", '
|
|
'example: \"1;8;64\".'))
|
|
parser.add_argument(
|
|
'--input_len',
|
|
type=str,
|
|
default="128",
|
|
help=('Specify input length(s) you want to benchmark, '
|
|
'this option is mainly for BERT. '
|
|
'Multiple input lengths can be separated by \";\", '
|
|
'example: \"20;60;128\".'))
|
|
parser.add_argument(
|
|
'--input_output_len',
|
|
type=str,
|
|
default="128,20",
|
|
help=('Specify input-output length(s) you want to benchmark, '
|
|
'this option is mainly for GPT and GPT-like models. '
|
|
'Multiple input lengths can be separated by \";\", '
|
|
'example: \"60,20;128,20\".'))
|
|
parser.add_argument(
|
|
'--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float16', 'bfloat16', 'float32'],
|
|
help='Choose data type between float16/bfloat16/float32.')
|
|
parser.add_argument(
|
|
'--refit',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'If this option is specified, a refit flag is added to TensorRT engines.'
|
|
)
|
|
|
|
parser.add_argument('--num_beams',
|
|
type=int,
|
|
default="1",
|
|
help=('Specify number of beams you want to benchmark.'))
|
|
parser.add_argument('--top_k',
|
|
type=int,
|
|
default="1",
|
|
help=('Specify Top-K value of decoding.'))
|
|
parser.add_argument('--top_p',
|
|
type=float,
|
|
default="0",
|
|
help=('Specify Top-P value of decoding.'))
|
|
|
|
parser.add_argument(
|
|
'--log_level',
|
|
type=str,
|
|
default="error",
|
|
choices=['verbose', 'info', 'warning', 'error', 'internal_error'],
|
|
help=
|
|
'Choose log level between verbose/info/warning/error/internal_error.')
|
|
parser.add_argument(
|
|
'--warm_up',
|
|
type=int,
|
|
default=2,
|
|
help='Specify warm up iterations before benchmark starts.')
|
|
parser.add_argument(
|
|
'--num_runs',
|
|
type=int,
|
|
default=10,
|
|
help='Minimal number of iterations to run during benchmarking.')
|
|
parser.add_argument(
|
|
'--duration',
|
|
type=int,
|
|
default=60,
|
|
help='Minimal duration of iterations to measure in seconds.')
|
|
|
|
parser.add_argument(
|
|
'--output_dir',
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
'If this option is specified, TensorRT engines will be saved to engine_dir.'
|
|
)
|
|
parser.add_argument(
|
|
'--engine_dir',
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
('If this option is specified, instead of building engines on-air before benchmarking, '
|
|
'the engines contained in the engine_dir will be used.'))
|
|
parser.add_argument(
|
|
'--n_positions',
|
|
type=int,
|
|
default=None,
|
|
help=
|
|
('If this option is specified, it will override the n_positions of TRT engines to the specified value instead of using pre-defined one'
|
|
'By default when this option is not used, it will use pre-defined n_positions'
|
|
))
|
|
parser.add_argument(
|
|
'--max_input_len',
|
|
type=int,
|
|
default=None,
|
|
help=
|
|
('If this option is specified, it will override the max input len of TRT engines to the specified value instead of using pre-defined one'
|
|
'By default when this option is not used, it will use pre-defined max input len'
|
|
))
|
|
parser.add_argument(
|
|
'--max_output_len',
|
|
type=int,
|
|
default=None,
|
|
help=
|
|
('If this option is specified, it will override the max output len of TRT engines to the specified value instead of using pre-defined one'
|
|
'By default when this option is not used, it will use pre-defined max output len'
|
|
))
|
|
parser.add_argument(
|
|
'--max_batch_size',
|
|
type=int,
|
|
default=None,
|
|
help=
|
|
('If this option is specified, it will override the max batch size of TRT engines to the specified value instead of using pre-defined one'
|
|
'By default when this option is not used, it will use pre-defined max batch size'
|
|
))
|
|
parser.add_argument(
|
|
'--force_num_layer_1',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'Quick sanity check with num_layer=1; will be silently ignored if --engine_dir is specified.'
|
|
)
|
|
|
|
parser.add_argument('--csv',
|
|
default=False,
|
|
action="store_true",
|
|
help='Output in CSV format.')
|
|
parser.add_argument('--enable_cuda_graph',
|
|
default=False,
|
|
action='store_true',
|
|
help='Execute GPT session with CUDA graph.')
|
|
parser.add_argument(
|
|
'--enable_custom_all_reduce',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'Use latency-optimized all-reduce for tensor parallelism. Gives better performance with NVLink.'
|
|
)
|
|
parser.add_argument(
|
|
'--strongly_typed',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
|
|
)
|
|
parser.add_argument(
|
|
'--quantization',
|
|
type=str,
|
|
default=None,
|
|
choices=[
|
|
'fp8', 'fp8_gemm', 'fp8_kv_cache', 'int8_sq_per_tensor',
|
|
'int8_sq_per_token_channel', 'int8_weight_only', 'int4_weight_only',
|
|
'int4_weight_only_awq', 'int4_weight_only_gptq'
|
|
],
|
|
help="Optimize the model with specified quantization recipe")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def main(args):
|
|
# We import tensorrt_llm here because MPI is initialized when
|
|
# tensorrt_llm is imported, but mpi4py does not work well with
|
|
# the start method `spawn` of Python multiprocessing,
|
|
# so we set the start method first, then initialize MPI.
|
|
from allowed_configs import get_allowed_models
|
|
from bert_benchmark import BERTBenchmark
|
|
from gpt_benchmark import GPTBenchmark
|
|
|
|
from tensorrt_llm.logger import logger
|
|
|
|
logger.set_level(args.log_level)
|
|
|
|
# Batch size
|
|
batch_size_options = args.batch_size.split(';')
|
|
batch_size_options = [int(i) for i in batch_size_options]
|
|
# Input length (for BERT-like models)
|
|
input_len_options = args.input_len.split(';')
|
|
input_len_options = [int(i) for i in input_len_options]
|
|
# Input-output length combination (for GPT-like models)
|
|
in_out_len_options = args.input_output_len.split(';')
|
|
in_out_len_options = [[int(i) for i in io.split(',')]
|
|
for io in in_out_len_options]
|
|
|
|
if args.model in get_allowed_models(benchmark_type="gpt"):
|
|
benchmarker = GPTBenchmark(
|
|
args.engine_dir,
|
|
args.model,
|
|
args.mode,
|
|
batch_size_options,
|
|
in_out_len_options,
|
|
args.dtype,
|
|
args.refit,
|
|
args.num_beams,
|
|
args.top_k,
|
|
args.top_p,
|
|
args.output_dir,
|
|
args.n_positions,
|
|
args.max_input_len,
|
|
args.max_output_len,
|
|
args.max_batch_size,
|
|
force_num_layer_1=args.force_num_layer_1,
|
|
enable_cuda_graph=args.enable_cuda_graph,
|
|
enable_custom_all_reduce=args.enable_custom_all_reduce,
|
|
strongly_typed=args.strongly_typed,
|
|
quantization=args.quantization)
|
|
elif args.model in get_allowed_models(benchmark_type="bert"):
|
|
benchmarker = BERTBenchmark(args.engine_dir,
|
|
args.model,
|
|
args.mode,
|
|
batch_size_options,
|
|
input_len_options,
|
|
args.dtype,
|
|
args.output_dir,
|
|
args.n_positions,
|
|
args.max_input_len,
|
|
args.max_output_len,
|
|
args.max_batch_size,
|
|
force_num_layer_1=args.force_num_layer_1)
|
|
else:
|
|
raise Exception(f'Unexpected model: {args.model}')
|
|
|
|
start = torch.cuda.Event(enable_timing=True)
|
|
end = torch.cuda.Event(enable_timing=True)
|
|
benchmarker.print_report_header(args.csv)
|
|
for config in benchmarker.get_config():
|
|
try:
|
|
inputs = benchmarker.prepare_inputs(config)
|
|
except torch.cuda.OutOfMemoryError as e:
|
|
logger.error(
|
|
f'Exception {e} caught while allocating memory; skipping {config}'
|
|
)
|
|
continue
|
|
|
|
torch.cuda.empty_cache()
|
|
latencies = []
|
|
|
|
# Launch a subprocess to monitor memory usage
|
|
q1 = Queue() # q1 is used for sending signal to subprocess
|
|
q2 = Queue() # q2 is used for receiving results from subprocess
|
|
mem_monitor_process = Process(target=mem_monitor, args=(q1, q2))
|
|
mem_monitor_process.start()
|
|
|
|
iter_idx = 0
|
|
try:
|
|
# Warm up
|
|
for _ in range(args.warm_up):
|
|
benchmarker.run(inputs, config)
|
|
logger.info('Warm up done. Start benchmarking.')
|
|
|
|
cur_duration = 0
|
|
start_time = time()
|
|
while iter_idx < args.num_runs or cur_duration < args.duration:
|
|
start.record()
|
|
benchmarker.run(inputs, config)
|
|
end.record()
|
|
|
|
torch.cuda.synchronize()
|
|
latencies.append(start.elapsed_time(end))
|
|
|
|
iter_idx += 1
|
|
cur_duration = round(time() - start_time, 3)
|
|
logger.info(
|
|
f'Benchmarking done. Iteration: {iter_idx}, duration: {cur_duration} sec.'
|
|
)
|
|
|
|
except Exception as e:
|
|
print("Found exception during benchmarking", e.with_traceback())
|
|
mem_monitor_process.kill()
|
|
raise e
|
|
logger.debug("Sending signal to mem monitor process, start")
|
|
q1.put(1)
|
|
logger.debug("Sending signal to mem monitor process, done")
|
|
peak_gpu_used = q2.get()
|
|
logger.debug("Get peak gpu memory usage from mem monitor process, done")
|
|
mem_monitor_process.join()
|
|
logger.debug("Memory monitor process joined")
|
|
|
|
latency = round(sum(latencies) / iter_idx, 3)
|
|
latencies.sort()
|
|
percentile95 = round(latencies[int(iter_idx * 0.95)], 3)
|
|
percentile99 = round(latencies[int(iter_idx * 0.99)], 3)
|
|
benchmarker.report(config,
|
|
latency,
|
|
percentile95,
|
|
percentile99,
|
|
peak_gpu_used,
|
|
csv=args.csv)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
mp.set_start_method('spawn')
|
|
args = parse_arguments()
|
|
main(args)
|