TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/iGptDecoderBatch.h
Kaiyu Xie f044eb8d94
Update TensorRT-LLM (#302)
* Update TensorRT-LLM

---------

Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
2023-11-07 19:51:58 +08:00

156 lines
5.3 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/iStatefulGptDecoder.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
namespace tensorrt_llm::runtime
{
namespace decoder_batch
{
class Request
{
public:
using ConstTensorPtr = std::shared_ptr<ITensor const>;
using TensorPtr = std::shared_ptr<ITensor>;
explicit Request(ConstTensorPtr ids, std::optional<SizeType> maxNewTokens = std::nullopt,
std::optional<SizeType> endId = std::nullopt, std::optional<SizeType> padId = std::nullopt)
: ids{std::move(ids)}
, maxNewTokens{maxNewTokens}
, endId{endId}
{
}
// mandatory parameters
ConstTensorPtr ids; // [inputSeqLen], the input sequence of token ids, on gpu
// optional parameters
std::optional<SizeType> maxNewTokens; // maximum number of tokens to generate for this request
std::optional<SizeType> endId; // end token id
TensorPtr embeddingBias; // [vocabSizePadded], on gpu
TensorPtr badWordsList; // [2, badWordsLength], on gpu
TensorPtr stopWordsList; // [2, stopWordsLength], on gpu
};
class Input : public decoder::Input
{
public:
using Base = decoder::Input;
explicit Input(TensorPtr logits)
: Base{std::move(logits)}
{
auto const batchSize = this->logits->getShape().d[0];
active.resize(batchSize, true);
}
explicit Input(TensorPtr logits, std::vector<bool> const& active)
: Base{std::move(logits)}
, active{active}
{
auto const batchSize = static_cast<std::size_t>(this->logits->getShape().d[0]);
TLLM_CHECK_WITH_INFO(this->active.size() == batchSize, "'active' vector size does not match logits batchSize");
}
// control activity of decoder slots in batch
std::vector<bool> active; // [batchSize]
};
using Output = decoder::Output;
class Token
{
public:
explicit Token(CudaEvent&& event, std::vector<bool> const& active)
: event(std::move(event))
, active(active)
{
}
CudaEvent event;
std::vector<bool> active;
};
} // namespace decoder_batch
//! GPT decoder class with support for in-flight batching
class IGptDecoderBatch : public virtual IStatefulGptDecoder
{
public:
using CudaStreamPtr = std::shared_ptr<CudaStream>;
using TensorPtr = std::shared_ptr<ITensor>;
using TokenPtr = std::unique_ptr<decoder_batch::Token const>;
//! @brief Initialize the decoder at `batchIdx` with a new `request`.
virtual void newRequest(
SizeType batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig)
= 0;
//! @brief Run one step for all requests without blocking the host process and return the token for synchronization.
virtual TokenPtr forwardAsync(decoder_batch::Output& output, decoder_batch::Input const& input) = 0;
//! @brief Wait for the call to `forwardAsync` associated with a token to complete.
virtual void forwardSync(decoder_batch::Token const& token) = 0;
//! @brief Run one step for all requests and wait for completion on the host.
virtual void forward(decoder_batch::Output& output, decoder_batch::Input const& input)
{
forwardSync(*forwardAsync(output, input));
}
//! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token
//! ids without padding for request `batchIdx`, on gpu
virtual TensorPtr getOutputIds(SizeType batchIdx) const = 0;
//! @brief Gather final beam search results for request `batchIdx`.
//! Result will only be available after event returned
//! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token ids without
//! padding for request `batchIdx`, on gpu
virtual std::tuple<CudaEvent, TensorPtr> getFinalOutputIds(SizeType batchIdx) const = 0;
//! @returns [batchSize, beamWidth], marks finished requests (per beam), on gpu
virtual TensorPtr getFinishedBeams() const = 0;
//! @returns [batchSize, beamWidth], total sequence lengths (per beam), on gpu
virtual TensorPtr getOutputLengths() const = 0;
//! @returns [batchSize (actual)], marks finished requests (per batch)
virtual std::vector<bool> getFinished() const = 0;
//! @returns [batchSize, beamWidth], cumulative log probabilities (per beam), on gpu
virtual TensorPtr getCumLogProbs() const = 0;
virtual TensorPtr getParentIds() const = 0;
virtual std::vector<SizeType> getNbSteps() const = 0;
protected:
IGptDecoderBatch() = default;
};
} // namespace tensorrt_llm::runtime