mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
90 lines
3.9 KiB
Plaintext
90 lines
3.9 KiB
Plaintext
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/kernels/onlineSoftmaxBeamsearchKernels.h"
|
|
|
|
using namespace tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
template <typename T, int MAX_K>
|
|
void topK_softMax_kernelLauncher(const T* log_probs, const T* bias, const bool* finished, const int* sequence_lengths,
|
|
float* cum_log_probs, float* output_log_probs, int** output_ids_ptr, void* temp_storage,
|
|
const int temp_storage_size, BeamHypotheses* beam_hyps, const int batch_size, const int beam_width,
|
|
const int vocab_size, const int* end_ids, const float* diversity_rates, const float* length_penalties,
|
|
cudaStream_t stream);
|
|
|
|
#define CASE_K(MAX_K) \
|
|
topK_softMax_kernelLauncher<T, MAX_K>(log_probs, bias, finished, sequence_lengths, cum_log_probs, \
|
|
output_log_probs, output_ids_ptr, temp_storage, temp_storage_size, beam_hyps, batch_size, beam_width, \
|
|
vocab_size, end_ids, diversity_rates, length_penalties, stream); \
|
|
break;
|
|
|
|
template <typename T>
|
|
void invokeTopkSoftMax(const T* log_probs, const T* bias, const bool* finished, const int* sequence_lengths,
|
|
float* cum_log_probs, float* output_log_probs, int** output_ids_ptr, void* temp_storage,
|
|
const int temp_storage_size, BeamHypotheses* beam_hyps, const int batch_size, const int beam_width,
|
|
const int vocab_size, const int* end_ids, const float* diversity_rates, const float* length_penalties,
|
|
cudaStream_t stream)
|
|
{
|
|
int log_beam_width(0);
|
|
int recursor(beam_width - 1);
|
|
while (recursor >>= 1)
|
|
++log_beam_width;
|
|
|
|
switch (log_beam_width)
|
|
{
|
|
// 0 < beam_width <= 4
|
|
case 0: // 1, 2
|
|
case 1: // 3, 4
|
|
CASE_K(4)
|
|
case 2: // 4 < beam_width <= 8
|
|
CASE_K(8)
|
|
#ifndef FAST_BUILD // For fast build, skip case 3, 4, 5
|
|
case 3: // 9 < beam_width <= 16
|
|
CASE_K(16)
|
|
case 4: // 16 < beam_width <= 32
|
|
CASE_K(32)
|
|
case 5: // 32 < beam_width <= 64
|
|
CASE_K(64)
|
|
#endif // FAST_BUILD
|
|
default:
|
|
throw std::runtime_error(
|
|
fmtstr("%s:%d Topk kernel of beam search does not support beam_width=%d", __FILE__, __LINE__, beam_width));
|
|
}
|
|
}
|
|
|
|
#undef CASE_K
|
|
|
|
template void invokeTopkSoftMax<float>(const float* log_probs, const float* bias, const bool* finished,
|
|
const int* sequence_lengths, float* cum_log_probs, float* output_log_probs, int** output_ids_ptr, void* tmp_storage,
|
|
const int temp_storage_size, BeamHypotheses* beam_hyps, const int batch_size, const int beam_width,
|
|
const int vocab_size, const int* end_ids, const float* diversity_rates, const float* length_penalties,
|
|
cudaStream_t stream);
|
|
|
|
template void invokeTopkSoftMax<half>(const half* log_probs, const half* bias, const bool* finished,
|
|
const int* sequence_lengths, float* cum_log_probs, float* output_log_probs, int** output_ids_ptr, void* tmp_storage,
|
|
const int temp_storage_size, BeamHypotheses* beam_hyps, const int batch_size, const int beam_width,
|
|
const int vocab_size, const int* end_ids, const float* diversity_rates, const float* length_penalties,
|
|
cudaStream_t stream);
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|