mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
147 lines
3.9 KiB
C++
147 lines
3.9 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
using namespace ::testing;
|
|
|
|
namespace
|
|
{
|
|
|
|
TEST(iTensorTest, UnsqueezeShape)
|
|
{
|
|
auto oldShape = ITensor::makeShape({2, 3, 4, 5});
|
|
{
|
|
auto shape = ITensor::unsqueeze(oldShape, 0);
|
|
|
|
EXPECT_EQ(shape.nbDims, 5);
|
|
EXPECT_EQ(shape.d[0], 1);
|
|
EXPECT_EQ(shape.d[1], 2);
|
|
EXPECT_EQ(shape.d[2], 3);
|
|
EXPECT_EQ(shape.d[3], 4);
|
|
EXPECT_EQ(shape.d[4], 5);
|
|
}
|
|
{
|
|
auto shape = ITensor::unsqueeze(oldShape, 1);
|
|
|
|
EXPECT_EQ(shape.nbDims, 5);
|
|
EXPECT_EQ(shape.d[0], 2);
|
|
EXPECT_EQ(shape.d[1], 1);
|
|
EXPECT_EQ(shape.d[2], 3);
|
|
EXPECT_EQ(shape.d[3], 4);
|
|
EXPECT_EQ(shape.d[4], 5);
|
|
}
|
|
|
|
{
|
|
auto shape = ITensor::unsqueeze(oldShape, 4);
|
|
|
|
EXPECT_EQ(shape.nbDims, 5);
|
|
EXPECT_EQ(shape.d[0], 2);
|
|
EXPECT_EQ(shape.d[1], 3);
|
|
EXPECT_EQ(shape.d[2], 4);
|
|
EXPECT_EQ(shape.d[3], 5);
|
|
EXPECT_EQ(shape.d[4], 1);
|
|
}
|
|
|
|
std::vector<int> invalidDims{-1, 5, 10};
|
|
for (auto invalidDim : invalidDims)
|
|
{
|
|
try
|
|
{
|
|
auto shape = ITensor::unsqueeze(oldShape, invalidDim);
|
|
FAIL() << "Expected failure";
|
|
}
|
|
catch (tensorrt_llm::common::TllmException const& e)
|
|
{
|
|
EXPECT_THAT(e.what(), testing::HasSubstr("Invalid dim"));
|
|
}
|
|
catch (...)
|
|
{
|
|
FAIL() << "Expected TllmException";
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(iTensorTest, UnsqueezeTensor)
|
|
{
|
|
auto oldShape = ITensor::makeShape({2, 3, 4, 5});
|
|
BufferManager manager(std::make_shared<CudaStream>());
|
|
|
|
{
|
|
auto tensor = manager.cpu(oldShape, nvinfer1::DataType::kINT32);
|
|
tensor->unsqueeze(0);
|
|
auto shape = tensor->getShape();
|
|
|
|
EXPECT_EQ(shape.nbDims, 5);
|
|
EXPECT_EQ(shape.d[0], 1);
|
|
EXPECT_EQ(shape.d[1], 2);
|
|
EXPECT_EQ(shape.d[2], 3);
|
|
EXPECT_EQ(shape.d[3], 4);
|
|
EXPECT_EQ(shape.d[4], 5);
|
|
}
|
|
{
|
|
auto tensor = manager.cpu(oldShape, nvinfer1::DataType::kINT32);
|
|
tensor->unsqueeze(1);
|
|
auto shape = tensor->getShape();
|
|
|
|
EXPECT_EQ(shape.nbDims, 5);
|
|
EXPECT_EQ(shape.d[0], 2);
|
|
EXPECT_EQ(shape.d[1], 1);
|
|
EXPECT_EQ(shape.d[2], 3);
|
|
EXPECT_EQ(shape.d[3], 4);
|
|
EXPECT_EQ(shape.d[4], 5);
|
|
}
|
|
|
|
{
|
|
auto tensor = manager.cpu(oldShape, nvinfer1::DataType::kINT32);
|
|
tensor->unsqueeze(4);
|
|
auto shape = tensor->getShape();
|
|
|
|
EXPECT_EQ(shape.nbDims, 5);
|
|
EXPECT_EQ(shape.d[0], 2);
|
|
EXPECT_EQ(shape.d[1], 3);
|
|
EXPECT_EQ(shape.d[2], 4);
|
|
EXPECT_EQ(shape.d[3], 5);
|
|
EXPECT_EQ(shape.d[4], 1);
|
|
}
|
|
|
|
std::vector<int> invalidDims{-1, 5, 10};
|
|
for (auto invalidDim : invalidDims)
|
|
{
|
|
try
|
|
{
|
|
auto tensor = manager.cpu(oldShape, nvinfer1::DataType::kINT32);
|
|
tensor->unsqueeze(invalidDim);
|
|
FAIL() << "Expected failure";
|
|
}
|
|
catch (tensorrt_llm::common::TllmException const& e)
|
|
{
|
|
EXPECT_THAT(e.what(), testing::HasSubstr("Invalid dim"));
|
|
}
|
|
catch (...)
|
|
{
|
|
FAIL() << "Expected TllmException";
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|